An Asynchronous Microprocessor in Gallium
Arsenide

José A. Tierno Alain J. Martin Drazen Borkovic
Tak Kwan Lee
Department of Computer Science
California Institute of Technology
Pasadena, CA 91125

November 9, 1993

Abstract

In this paper, several techniques for designing asynchronous circuits
in Gallium Arsenide are presented. Several new circuits were designed, to
implement specific functions necessary to the design of a full microproces-
sor. A sense-amplifier, a completion tree, and a general circuit structure
for operators specified by production rules are introduced. These circuit
were used and tested in a variety of designs, including two asynchronous
microprocessors and two asynchronous static RAM’s. One of the micro-
processor runs at over 100 MIPS with a power consumption of 2 Watts.

1 Introduction

With an electron mobility about six times that of silicon at room temperature,
and with a lower parasitic capacitance due to semi-insulating substrate, GaAs is
potentially faster than silicon. Up until recently, however, GaAs was not avail-
able to the VLSI community at large because of inherent fabrication difficulties.
These difficulties have been overcome to a large extent. Several foundries are
now offering GaAs fabrication lines under conditions similar to CMOS, with
density limited to about 100,000 transistors. In particular, Vitesse Semiconduc-
tors is offering fabrication through MOSIS to the academic community in the
United States.

At the moment, the transistor of choice for GaAs digital VLSI is the MES-
FET. There is no oxide insulating the gate of a MESFET transistor from source
and drain; therefore, the logic families available in GaAs are much less attractive
than CMOS or even nkMOS. DCFL has been adapted to GaAs, but has very re-
duced noise margins, and restricted fanin and fanout. With no complementary

transistor available, the logic is ratioed. As a result, a considerable fraction of
the speed advantage is lost due to the complexity of the available logic families
relative to CMOS.

We have developed a design method for asynchronous VLSI that is; to a
large extent, technology independent. Thus, it should be straightforward to
port a design from one technology to another. Also, since the circuits designed
are delay-insensitive, they are more robust with respect to variations in physical
parameters. Hence, the method should make it easier to design in a demanding
technology such as GaAs, where parameters—particularly threshold voltages—
are difficult to control. Finally, since the circuits we design do not use a clock,
we avoid the complexities of high-speed clocking schemes. Adapting our method
to GaAs design would be an excellent demonstration of the advantages of the
method.

From the onset, our intention was to port to GaAs the asynchronous micro-
processor we designed in CMOS in 1989 [MBL*89]. At the same time, we would
demonstrate the portability of our approach across vastly different technologies,
and the efficiency and robustness of the design method.

To this end, several special purpose circuits had to be designed. Some of
them are presented in this paper, together with their use in the microprocessor.

2 GaAs and the MESFET

2.1 MEtal Semiconductor Field Effect Transistor

The MEtal Semiconductor Field Effect Transistor, or MESFET, is the transistor
of choice for GaAs VLSI applications. It is the easiest to manufacture, provides
the highest density (about 100,000 transistors on a chip), and has a very good
power-delay product, that competes fairly well with CMOS. MESFET circuits
can be better compared to ECL. At this point, GaAs is slightly faster, uses
far less power, and has higher circuit density, for a similar cost. An important
application of GaAs is to provide replacements for ECL parts, specially fast
RAM’s, and other LSI circuits.

MESFET’s are junction FET’s. The gate is built with metal, and forms a
Schottky junction with the transistor channel. There is no insulation between
gate and channel; the Schottky junction creates a diode from gate to source
and from gate to drain. This diode is probably the most serious constraint for
MESFET circuits, since it limits the voltage differential between gate and source
or drain to the diode’s forward conduction voltage, about 0.7 volts. Above that
difference, the diode will be forward biased and current will flow from the gate
into the channel.

Hole mobility is low in GaAs (10 times less than electron mobility [LB90]),
which makes p-type FETs fairly slow. There is, therefore, no complementary
logic available. As in nMOS, n-type transistors come in two flavors, depletion-

=l

2:2 20:1
“Feout -
10:1 20:1

a 20:1 2:2 |

:' :' 3 out
PR e AU S S e 12 20:1‘—@1
1 L L L

(b) ¢

Figure 1: (a) DCFL nor gate, (b) super buffered nand gate, and (c)“squeeze”
buffer

mode and enhancement-mode. E-mode transistors have a positive threshold
voltage, and d-mode have a negative threshold voltage, that is, they require a
negative gate to source voltage to be cut off.

2.2 Direct Coupled Fet Logic

Analogous to its nMOS namesake, DCFL is the most widely used logic family
in GaAs VLSI. It is simple, uses little power, and has the highest density of all.
Figure 1(a) shows a DCFL nor gate.

Signals have a restricted voltage swing, because of the input-to-ground diode
at the input of DCFL gates. Logic-low is about 0.1V, while logic-high is about
0.6V; this drastically reduces the noise margins of DCFL gates. In DCFL nand-
gates noise margins become critical: the series transistors in the pull-down chain
push the logic low to about 0.2V, and the noise margin is so small that many
designers avoid using nand gates completely.

As in nMOS; signals often have to be buffered. A super-buffer configuration
can be used (see Figure 1(b) and (c)). A super-buffer also increases the noise
margins by lowering the logic-low voltage, since the output stage is not ratioed.

3 Description of the Processor

The microprocessor is a 16-bit, pipelined, RISC-style processor. It is a modified
version of the CMOS design described in [MBL*89].

Instructions are issued in order, but may complete out of order. The proces-
sor has 16 general purpose registers, with four buses, two for read and two for

write. Registers have individual locks to solve read-after-write and write-after-
write hazards.

In addition to the ALU, there is one adder in the program counter (PC)
unit, for relative branching and incrementing the program counter register. For
simplicity, the memory address adder was omitted, thus reducing the number of
required buses from five to four, and reducing the size of the datapath compared
to the CMOS processor.

Other modifications include a revised pipelining of the ALU unit, and better
balanced control of some of the shared resources.

The processor was initially specified as a set of concurrent processes. The
text of these processes, shown in Figures 2 and 3 was later transformed into a
signal transition language, or handshaking expansion, and then compiled into
the gate netlist of the final circuit.

The high-level specification of Figures 2 and 3 shows in detail how the differ-
ent units interact. The language used is similar to C.A.R. Hoare’s CSP [Hoa78§],
and described in [Mar90].

4 GaAs Technology Mapping

Even though it is be tempting to map the processor design into DCFL gates, the
specific requirements of asynchronous circuits makes that choice impractical.

A robust DCFL circuit has to be made almost exclusively from nor gates,
plus super-buffers and a few special purpose circuits. We could build the pro-
cessor with these elements, but at the expense of compromising the delay-
insensitivity of the circuit in almost every gate. It is usually safe to implement
C-elements with nor gates; however, in such a large design it would be almost
impossible to keep track of delays and make sure that no hazard threatens the
functionality of the circuit. Parts of the layout are generated with standard-
cell-place-and-route tools, where we do not have as much control over delays as
we need.

The complexity and number of inputs that a DCFL gate can have are limited
by noise margins, subthreshold currents, and variations in threshold voltages.
The synthesis method sometimes generates large or complex operators, and
these would have to be decomposed into smaller ones to fit in the available
smaller DCFL gates. This decomposition creates a number of extra nodes that
may introduce hazards or races. A proper decomposition of the bigger operators
is, at best, a very hard task. We need circuits that allow a direct synthesis of
those operators, up to a reasonable size. To solve the problem of large operators,
we have investigated several alternative logic configurations.

IMEM = *[ID'imem|[pc]]

FETCH = x[PCI1; ID?; PCI2; E1V;
[offset(i.op) — PCI1; ID7offset; PCI2; OF
0 —offset(i.po) — skip
1, B2
]

PCADD =(*[[PCII — PCIl; y:=pc+1; PCI2; pc:=y
0 PCAI — PCA1; y:=pc+ offset; PCA2; pc:=y
0 Xpc — Xlpce Xpc
0 Ypc — Y7pce Ypc
1]
|| *[[Xof — Xloffset e Xof 1]

)

EXEC =*[E175;

[alu(j.op) — E2; XseYse AClj.ope ZAse P

0 ld(j.op) — E2; ZMse Yse MCL

0 st(j.op) — E2; XseYse MCS

0 adi(j.op) — OF; E2; Xof e Yse ACladd ¢ ZAse P

0 stpe(j.op) — Xpce Yse ACladd @ ZAs e P; E2

0 jmp(j.op) — Ypce Ys; E2

0 brch(j.op) — OF; F7f;
[cond(f,j.cc)— PCAIL; PCA2
0 —cond(f,j.cc) — skip
1, E2

1]

Figure 2: The program, first part

ALU =(*[[AC — AC?0ope X7z e Y7y;
(z,f) = aluf(z,y,op,f)e B

0 F — FIf
1]
|| *[B; ZAlze V]
[| *[P; V1

)

MU =+*[[MCL— Y7?mae MCL; MDIL?w; ZM'w
0 MCS— X?weY?mae MCS; MDS!w
1]

DMEM =*[[MDL — MDL!'dmem[ma]
0 MDS — MDS?dmem[ma]
11

REG[k]=(*[[-bkAk=jzAXs — XlreXs 1]
| *[[~bkAk=jyAYs — VYireVYs]]
|| *[[—bkAk=j.2NZAs — bkl; ZAs; ZA?r; bk| 1]
|| *[[~bkAk=j.2 AZMs — bk|; ZMs; ZM?r; bk| 11

Figure 3: The program, second part

4.1 Datapath

The datapath comprises three different units: the ALU, the PC unit for manip-
ulations of the program counter, and the memory unit for execution of load and
store operations. They are mostly combinatorial circuits, replicated a number
of times. Data-path delay is determined mostly by carry-chain, control signal,
and bus delays. Carry-chain delay is data dependent, since the adder uses carry
prediction [Mar92].

It is important that the datapath be optimized for size: in the datapath
most signals are local, with the exception of control lines and buses, and thus
delays and power depend directly on the physical dimensions of the datapath.

The datapath must be optimized for power; in this design, for example 70%
of all power is spent by the datapath, 15% by the register file, and 15% by the
control logic (not counting pad-driver power).

To satisfy these constraints, all datapath gates are DCFL, except nand gates
and buffers, and completion-detection circuits.

Nand gates were implemented as shown in Figure 1(b) [LB90]. The super-

Blac i -

J_‘L'{
SRR I . Repeating section

= = =

(a) (b)
Figure 4: Multi-input C-element. (a) Transistor schematic, and (b) logical
diagram

buffer stage allows the output low voltage to be low enough, since the pull-down
does not have to fight a passive pull-up. The lower output low increases the
noise margins considerably, with a small penalty in area and power.

Super-buffers were used to buffer bus and control signals. To improve per-
formance and noise margin characteristics, a feed-back transistor was added,
creating a “squeeze” buffer (see Figure 1(c) [Bro92]). Squeeze buffers allow the
use of a stronger pull-up transistor, the feed-back transistor limits the output
high voltage.

To generate completion signals from the datapath, we use C-elements with a
large number of inputs. They can be built from smaller C-elements connected in
a tree [Mar90], or, as in this case, as a single logic gate (see Figure 4(a) and (b)).
For a discussion on how this circuit works, see [Tie92]. Though a completion
tree could be implemented with DCFL nor gates, it would be significantly slower
and bigger than that of Figure 4(a). Completion detection is in sequence with
the calculations performed by the datapath, and affects performance directly.
It is critical to have an easy and fast way of generating the completion signal.

4.2 Control Logic

Control logic takes care of the sequencing of actions in the processor. After
compilation, each control signal is assigned a set of “production rules”, of the
form:

G — =z
H — z]

where G and H are boolean expressions in terms of the other signals. G and
H do not have to be complementary. In fact, most operators in the control are

IS Q

e

z aAN=-bVdAc— 2z
—dA-e—z]

(b) (o)

v

d

€

Figure 5: Dual rail implementation of control signals. (a) Transistor schematic,
(b) logical diagram, and (c) production rules

state holding, that is, G V H does not hold. There are different ways of giving
a direct implementation of these production rules. One, Source Follower Fet
Logic, is given in [Tie92]. In that paper, a systematic way of generating any
operator described by production rules is presented. This method was applied
in the design of the first GaAs microprocessor. However, it resulted in a circuit
with a large power consumption (4 Watts) and modest performance (70 MIPS).

For the second GaAs processor, a different approach was used. Each signal is
implemented as a dual-rail encoded signal, always generating both positive and
negative sense. Since most signals are state-holding, this is necessary anyway
(we do not have dynamic logic available). On the up side, no inverters are
necessary to generate the boolean expressions for the production rules. On
the down side, combinatorial gates require extra circuitry to generate dual-rail
outputs, as do signals coming in from the datapath.

Figure 5 shows how a specific set of production rules are implemented in dual-
rail. Note the feed-back transistor on the outputs of the individual nor gates.
These have the same function as the one on the “squeeze” buffer; allowing us
to use much stronger pull-up transistors.

4.3 PLA’s

The power consumption of these circuits is relatively high, and the chips run hot
(around 100°C). At this temperature, subthreshold currents of the pull-down

AR
a ihﬁ
T

Figure 6: Example of a nor-nor PLA implemented with source-followers

transistors may be strong enough to overpower the pull-ups; nor gates with
more than 6 inputs are impractical, because the off current of 6 transistors is
of the same order of magnitude as the on current of one transistor. Therefore,
static DCFL PLAs cannot be used.

We use a different structure for the PLAs in the processors. The nor planes
are implemented with source followers, which can be turned off more effectively
than the corresponding DCFL structure (see Figure 6). A penalty is paid in
speed and power, but min-terms with up to 10 inputs are realizable. The internal
signals in the nor plane can switch rail to rail, giving much improved noise
margins, and the level shifting diodes help reverse-bias the pull-up transistors
of the source-followers. Also, the ratio between the pull-up and pull-down in
the source-follower is close to 1, and the subthreshold current of the pull-down
can better balance the pull-up.

4.4 Register File

The register file has 16 registers, 16 bits wide, and four ports, two for read and
two for write. Register 0 is hard-wired to be read always as zero. Each register
bit has a total of 12 transistors, four for the flip-flop and two extra for each
port (see Figure 7). All ports are dual-rail, that is, data and inverted data
is provided. Between reads and writes the buses are pre-charged to a neutral
value, to prepare for the next operation, and reset the completion circuits.

Read ports are implemented with a dual-ended sense amplifier (see Figure 8).
This sense-amp detects a small difference between the true and false buses, and
drives these buses strongly in opposite directions, using transistors TH, T4, and
T1. To work properly, the register that is being read has to be selected some
time prior to applying the sense signal. To this effect, the sense signal is derived
from an “or” of all select signals for the given port.

se Lsel
rs rs \—F‘
se sel
Ja.sel

e

-+

Zasel — —

ZMgel Zl;nsel
by bp
br br

Figure 8: Sense amplifier, and pre-charge circuit for the register file

When sense is off, transistors T8, T3 and T7,T2 pre-charge buses by and bp
to a value determined by the ratio between T8 and T3 (T7 and T2). Transistor
T6 further ensures the symmetry of the circuit.

The buses are then buffered before going into the datapath, to isolate the
sense amplifier; and to restore the logic levels of the data signals.

5 Results

Using these techniques, several circuits have been designed, fabricated and
tested on the HGAAS II and HGAAS III processes offered by Vitesse Semi-
conductors. Among them, small RAM’s, register files, and two microprocessors.

10

5.1 Asynchronous Static Memories

We designed and fabricated two different types of static memories in GaAs.
The first is a dual ported register file, 16 words of 4 bits/word. It was meant
to provide a small amount of fast memory for the microprocessor to run test
programs at full speed. Out of 30 bonded devices, 29 were functional. Access
time is bns, and the chip dissipates 500mW at 2.2V.

The second SRAM has 64 words of 4bits/word [Hof91], and was designed
as an intermediate step towards a larger memory to be used as a cache for the
processor. All 30 bonded devices received were functional. The access time is
3ns, including pad delays, and the chip dissipates 700mW at 2.3V

This 64 x 4 memory was designed after the first processor, and incorporates
several improvements derived from our experience with the earlier designs. Also,
the circuits were carefully optimized for high speed and low power consumption.
The performance obtained indicates that the improvements envisioned for the
next processor generation should be attainable.

5.2 Microprocessors

The first microprocessor design uses the circuits described in [Tie92]. The main
concern during the design was to get around parameter variation problems and
noise margin considerations. This was achieved, but at the expense of power
and performance. At 70 MIPS, the processor consumes 4 Watt.

Several new ideas and circuits were incorporated in the new design, many of
them presented in this paper. All of those circuits were fabricated and tested
successfully.

This design was extensively simulated with Hspice. The expected perfor-
mance of this design is about 200 MIPS with a dissipation of 2 Watts, fabri-
cated with the HGAAS III process. Power and speed predictions have been very
accurate so far using the Hspice models. However, in this case the measured
performance was only 100 MIPS. The causes are still under investigation. There
is some evidence of fabrication problems, and underestimation of the parasite
capacitances as extracted by the MAGIC layout program.

6 Conclusions

In the course of this project, we have designed a number of very different GaAs
circuits. Most of them had very strict requirements, to overcome the limitations
of GaAs. No general solution is given to synthesize all logic circuits in a design
as big as a microprocessor. Instead, we found specific solutions to implement
completion trees, control circuits, PLA’s, registers, etc.

The first GaAs microprocessor, though disappointing in terms of perfor-
mance, gave us invaluable experience in verifying and testing these circuits,
as well as which were the inherent problems of each. Together with some of

11

the RAM designs, it allowed us to prepare for a second microprocessor, with
considerable improvements in performance.

Another factor affecting performance is pad delay. So far we have used
ECL levels on the outside, to be able to interface to standard parts and simplify
prototyping. Pad delays are in the order of 1ns, mostly spent in level conversion;
also, the padframe uses a considerable amount of power —close to 1A worst case
for the processor—. This delay and power can be greatly reduced by designing
matched pad drivers and receivers in a system composed exclusively of GaAs
parts. It would certainly be a requirement in the interface with cache memory.

Porting the design of the original CMOS microprocessor was almost as easy
as expected. A few changes were necessary because of the complexity of register
cells in the first GaAs version. These changes were carried over to the second
processor to speed-up the redesign.

All considered, the expected performance of the new microprocessor is sat-
isfactory. At 50 MIPS/watt, it offers remarkable speed for the power consump-
tion.

Acknowledgments

We are indebted to Marcel van der Goot for his help in generating high quality
software support. Acknowledgment is due to Steve Burns and Pieter Hazewin-
dus, for their participation in the original design, and many very useful com-
ments and conversations, and H. Peter Hofstee for his collaboration in the design
of asynchronous memories. Many thanks to Ray Milano of Vitesse Semiconduc-
tors, for invaluable help with the HGAAS technology, and to Cindy Hibbert
and Metasoftware, for their help with Hspice.

The research described in this paper was sponsored by the Defense Advanced
Research Projects Agency, DARPA Order number 6202, and monitored by the
Office of Naval Research under contract number N00014-87-K-0745.

References

[Bro92] Richard Brown. Private communication, 1992.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. Comm. ACM,
21(8):666-677, 1978.

[Hof91] H. P. Hofstee. Deriving some asynchronous memories. Unpublished,

1991.

[LBY0] S. 1. Long and S. E. Butner. Gallium Arsenide Digital Integrated
Circuit Design. McGraw-Hill, New York, 1990.

12

[Mar90]

[Mar92]

[MBL*89]

[Tie92]

Alain J. Martin. Synthesis of asynchronous VLSI circuits. In
J. Straunstrup, editor, Formal Methods for VLSI Design, pages 237—
283. North-Holland, 1990.

A. J. Martin. Asynchronous datapaths and the design of an asyn-
chronous adder. Formal Methods in System Design, 1(1):117-137,
1992.

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovié¢, and
Pieter J. Hazewindus. The design of an asynchronous microproces-
sor. In Charles L. Seitz, editor, Advanced Research in VLSI: Proceed-
ings of the Decennial Caltech Conference on VLSI pages 351-373.
MIT Press, 1989.

J. A. Tierno. Designing asynchronous circuits in Gallium Arsenide.
CS-TR-92-19, California Institute of Technology, 1992.

13

