
1

CHP and CHPsim: A Language and Simulator for
Fine-Grain Distributed Computation

Alain J. Martin & Christopher D. Moore
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125, USA

Abstract—This paper describes a complete and stable version of
CHP and the simulator CHPsim. CHP is a language for fine-grain
distributed computation with asynchronous VLSI as its main ap-
plication. Several partial versions of the language are already
widely used, but CHP has never been presented as a complete lan-
guage. This presentation includes constructs like meta process,
connect statement, value probe, peek, and templated type. CH-
Psim allows for mixed-level simulation of a system, with different
components at various levels of implementation (CHP, HSE, PRS).

INTRODUCTION

CHP (Communicating Hardware Processes) is a program-
ming language for fine-grain distributed computations with
asynchronous VLSI as its main application. A CHP program
consists of a fixed set of concurrent processes communicating
by messages.

CHP already has a long history. It took shape in the early
1980’s to describe distributed computations in general. Starting
from C.A.R. Hoare’s CACM version of CSP[5], and Dijkstra’s
guarded commands[4], the early prototype of CHP introduced
the notion of channels, and the probe construct, neither of which
exists in CSP. The combination of processes with channels,
send/receive communication, and probe operation on channel
produced a very useful, albeit restricted, distributed program-
ming model which was successfully used both for teaching dis-
tributed computing and for implementing distributed compu-
tations on experimental multiprocessors. But it was the de-
velopment of a synthesis method for asynchronous VLSI that
prompted the extension of the prototype notation into CHP[7].

Compared to other languages for distributed computations,
CHP contains both restrictions and extensions. The restric-
tions are required by the limitations of hardware to finite data
ranges, and by the impossibility to create physical resources
during the execution of a computation in VLSI. Dynamic ob-
jects, like certain data types, inner blocks for variable scoping,
general recursion, and the dynamic creation of processes are
also excluded. The extensions are mainly concerned with com-
munication, which is pervasive in VLSI and must be performed
efficiently, and with the description of complex process struc-
tures. The resulting notation is vastly different from CSP and it
would be a mistake to consider CHP as a syntactic variation on
CSP.

CHP has gone through many modifications since it was in-
troduced. It has been used to design several important projects

in asynchronous VLSI at Caltech (among others the first asyn-
chronous microprocessor in 1988[1] and the Caltech MiniMIPS
in 1998[8]) and in other async labs around the world [13], [14].
It is also used to model other types of fine-grain distributed
computation, in particular neuromorphic systems. See, e.g.,
[16], [17]. CHP is used in industry, not only in startups, but also
in major companies like ST, FranceTelecom, and CEA/LETI.

It is the recent development of an “industrial-strength” CHP
simulator, CHPsim, that forced us to stabilize the language def-
inition. This paper describes what we consider a mature and
stable version of CHP and the CHPsim simulator[3] attached
to it. The simulator will be made available to the community
through the GPL. The description of the semantics has been
kept informal, but there already exist several definitions of the
semantics of the main constructs of CHP in the literature,[15].

CHPsim is primarily designed for interactive debugging of
a CHP system in particular with the use of cosimulation, i.e.
the simulation of a system whose components are at different
stages of the QDI synthesis: CHP, HSE, PRS. The main distin-
guishing feature of CHPsim is the ability to detect any violation
of the QDI requirements of stability and non-interference via a
complete randomization of the sequencing of parallel events.
These violations are a fairly common type of bug, and they can
be one of the most difficult to fix. However, CHPsim allows the
designer to manually specify intentional timing assumptions, so
it is not strictly limited to QDI design.

I. THE STRUCTURE OF A CHP PROGRAM

A CHP program usually consists of the parallel composition
of several concurrent components called processes. Concurrent
composition of processes is the main source of concurrency.
The code of a process is mostly sequential—as we shall see,
CHP allows a restricted (but important) form of concurrency
inside a process. CHP processes do not share variables. They
communicate exclusively by passing messages through com-
munication channels. The set of processes and the communica-
tion channels connecting them form a graph with the processes
as vertices and the channels as edges, called the process graph.
A process is first declared in a declaration statement and then
instantiated in an instantiation statement. In the usual modu-
lar (“structured”) approach to system design, a system is con-
structed by composing processes in a hierarchical fashion. A
process is either a simple or a meta process. A process that con-
sists of the composition of a number of subprocesses is called a

2

meta process. Otherwise, it is a simple process. A simple pro-
cess is identified by the label chp. A meta process is identified
by the label meta .

II. SEQUENTIAL CHP

CHP is a strongly typed imperative language: the state of
a computation is changed by explicit assignments of values
to variables. Sequential CHP contains a few unconventional
constructs. (1) The control structures (“if-statement” and “do-
loop”) are those of Dijkstra’s guarded commands, which intro-
duce the notion of wait on a condition. Wait is equivalent to
an abort in a sequential computation since nothing can modify
the wait state, but it is extremely useful for concurrency. (2)
Finite-integer arithmetic is not defined since it is implemented
from scratch for each design; the choice made in the CHPsim
simulator is used as default. (3) All objects are permanent once
they are created, and therefore CHP has no notion of dynamic
scoping, stack, pointers. No general recursion is allowed.

A. Variables, Data Types, and Assignment

All variables are local to a process. Inside a process, a vari-
able may be local to a procedure or function. Variable declara-
tion is superfluous for specifying the scope of the variable since
its scope is always the whole process, or procedure or function,
in which it appears. Declarations are used solely to specify
variable types.

There are three generic variable types: Boolean (bool), in-
teger (int), and symbol. The generic types integer and symbol
can be restricted by the definition of specific types. An integer-
type is a specific type defining a set of integer values between
a lower bound and an upper bound. The two bounds define the
range of the type. For example, the type declaration

type x = {0..7}

defines the integer-type x with values ranging from 0 to 7. A
variable y can then be declared to be of type x. Variable y can
be also declared directly as

var y = {0..7}

keeping the type anonymous. Similarly, the symbol-type color
can be defined as

type color = {blue,white, red} .

The assignment x := expr assigns the value of the expression
expr to variable x. The compiler checks that the generic type
of expr is the same as the generic type of x. If x is defined
as a specific type, the check that the value of the expression is
within the range of x is done at run-time by the simulator.

For b Boolean, the command b := true , is also denoted b ↑;
and the command b := false is denoted b ↓.

III. ARRAYS AND RECORDS

The two mechanisms for structuring data are array and
record . (Arrays are also used for processes and ports. Ports
are defined in Section V.)

A. Array

CHP uses the usual array mechanism and notation with the
following extension. In hardware, it is often useful to address
one bit, or a range of bits (a “slice”), of the Boolean represen-
tation of an integer variable. Therefore, an integer variable is
always implicitely declared as a Boolean array as well.

Given integer variable x, the integer index x [7] represents
the bit 7 of the binary representation of x. It is of type Boolean.
Hence, the test for parity of x can be implemented as x [0]. The
integer slice x [0..3] is an integer variable of type {0..15}. When
a slice of an integer variable is used repetitively in a program,
its array range can be given a name by declaring an integer field.
For instance, integer variable i in the CHP of the Caltech Asyn-
chronous Microprocessor (CAM) contains the current instruc-
tion being executed. Several slices of i are recognized as stan-
dard fields of the instruction and are declared as integer fields.
For an instruction of type “alu”, the fields are

field op = [12.. 15];
field x = [8 .. 11];
field y = [4 .. 7];
field z = [0 .. 3];

i.op contains the “opcode” of the instruction; i.x and i.y con-
tain the indices of the registers to be used as parameters of the
instruction, and i.z contains the index of the register in which
the result of the instruction execution is to be stored. They
are integer variables. The array declaration is perhaps a little
unusual: For example, a one-dimensional array A of integer
ranging from 0 to n− 1 is declared as

A[0..n − 1] : integer .

Hence, a load instruction is described as

type word = {0..216 − 1};
var dmem[0..m − 1] : word ;
var reg [0..15] : word ;
reg [i .z] := dmem[reg [i .x] + reg [i .y]] .

B. Records
A variable declared as a record is a (finite and usually small)

collection of variables (record-fields) each with its own type.
For example, the integer variable i representing the currently
executed instruction in the CAM could have been declared as a
record of several types depending on the type of the instruction.
For ALU instructions, the type would be:

type alu : record{op, x, y, z : {0..3}} .

C. Sequential Composition
Inside a process, arbitrary program parts can be composed

sequentially by the usual semicolon operator. The semicolon is
a composition operator. It is not a termination symbol.

IV. SELECTION AND REPETITION

The two control structures are the selection and the repetition
of Dijkstra’s guarded commands. The selection is a generaliza-
tion of the usual if-statement. The repetition is a generaliza-
tion of the usual do-loop. Both selection and repetition allow

3

for an arbitrary number of cases (guarded commands) like in
a case-statement. They also allow for non-deterministic choice
(arbitration).

It is in general difficult, and often impossible, to determine at
“compile-time” which selections require arbitration. We there-
fore introduce two sets of control structures, a deterministic one
and a non-deterministic one, and let the designer explicitly in-
dicate where arbitration is needed.

A. Selection

The execution of the deterministic selection command

[G1 −→ S1[]...[]Gn −→ Sn] ,

where G1 through Gn are Boolean expressions, S1 through Sn

are program parts, (Gi is called a “guard,” and Gi → Si is
called a “guarded command”) amounts to the execution of the
arbitrary Si for which Gi holds. At most one guard holds at
any time. If none of the guards is true, the execution of the
command is suspended until one guard is true. The traditional
if-statement: if B then S is expressed as

[B −→ S[]¬B −→ skip] ,

(skip is the statement that does nothing but terminates). The tra-
ditional if-then-else-statement, if B then S1 else S2, is written

[B −→ S1[]¬B −→ S2] .

The non-deterministic selection command

[G1 −→ S1| . . . | Gn −→ Sn]

is identical to the deterministic one, except that several guards
may be found true during a guard evaluation. In such a case, an
arbitrary true guard is selected, and the corresponding statement
is executed. The execution is suspended if no guard is true.

B. Wait

The net-effect of the program [B → S] can be described
operationally as “wait until B holds, then execute S.” The
concept of a wait as a computing primitive makes sense only
in the context of concurrency. If B is in terms of local vari-
ables only, either B holds when it is evaluated or the wait for B
to become true never terminates. The statement “wait until B
holds” is used mostly when the value of B can be changed by
another process, which is possible either with shared variables,
which are not allowed in CHP, or with the “probe” construct
which will be introduced shortly. The program statement [B],
where B is a Boolean expression, is a shorthand notation for
[B → skip], and thus for “wait until B holds.” Hence, “[B]; S”
and “[B → S]” are equivalent.

C. Repetition

The execution of the deterministic repetition command

*[G1 −→ S1[]...[]Gn −→ Sn] ,

where G1 through Gn are Boolean expressions, and S1 through
Sn are program parts, amounts to repeatedly selecting the ar-
bitrary Si for which Gi holds, and executing Si. At any time,

at most one guard is true. If none of the guards is true, the
repetition terminates.

The traditional while-loop, while B do S , is written:

*[B −→ S] .

Non-deterministic repetition exists but is rarely used.

D. Infinite Repetition and Reactive Processes

Since many computations in CHP are modeled as non-
terminating processes, we introduce a shorthand notation for
the non-terminating repetition: ∗[S] stands for ∗[true → S]
and, thus, for “repeat S forever.” A reactive repetition is a con-
struct of the form:

*[[G1 −→ S1[]...[]Gn −→ Sn]] ,

which can be described as “repeat forever: Wait until some Gi

holds; execute the Si for which Gi holds.” This structure is used
frequently in describing hardware components. Such a compo-
nent is a non-terminating process waiting for some condition
on its input ports to become true. When condition Gi becomes
true, the component “reacts” by executing Si, and then returns
to waiting for the next external condition to be true. The reader
must appreciate the difference between the reactive repetition
above and the simple repetition:

*[G1 −→ S1[]...[]Gn −→ Sn] .

The simple repetition terminates when none of the Gi’s is true.
The reactive repetition never terminates.

E. The Replication Construct

VLSI algorithms are characterized by an extensive use of
replication. A typical example is that some action has to be
performed (sequentially or concurrently) on all the Booleans
that represent an integer. Another example is that of an n-place
buffer constructed as the concurrent composition of n identi-
cal one-place buffer. CHP therefore contains a syntactic oper-
ator, called the replication construct, which makes it possible
to replicate any program part into a number of instances in or-
der to simplify the coding of long lists of objects. We omit the
further description of the replication construct.

F. Procedures and Functions

Procedures and functions have been kept as simple as pos-
sible and have the same restrictions as processes concerning
the use of variables, so as to make the translation to processes
straightforward.

Procedures and functions use only local variables: no global
variables, no persistent variables, and no communication ports
are allowed. The communication between a procedure or a
function and its environment is entirely through the parameter
mechanism.

Because of the above restrictions on the use of variables in-
side procedures and functions, a procedure (or a function) dec-
laration is entirely “portable”: the procedure (or function) can
be declared anywhere and used anywhere. As a consequence,
procedure names and function names must be unique inside the
whole name space. But a procedure or a function call inside a

4

process is local to the process: if the same procedure is called
inside two different processes, the two programs implementing
the two calls can be viewed as operating on two disjoint sets of
variables. The further description of procedures and functions
is omitted.

V. CONCURRENT CHP
A. Parallel Composition of Processes

We postulate that the parallel composition of non-terminating
processes is weakly fair: If, at a certain point of the parallel
execution of processes p1 and p2, x is the next action of p1 to
be executed, then x will be executed after a finite number of
actions of p2, if the computation is dadlock-free.

The parallel bar never explicitely appears in the CHP code
and is not part of the language syntax: processes created by an
instantiation command are automatically composed in parallel.

B. Ports, Channels, and Connect Statement

Processes communicate with each other by communication
commands on ports. A process can send on an output port or
receive on an input port. A port of a process is paired with a
port of another process to form a channel. A channel cannot be
formed by two ports of the same process. A channel is shared
by exactly two processes; but it is possible to generalize the
definition to more than two processes sharing one channel. The
ports of a simple process are all external: Each port is to be
connected to a port of another process to form a channel. A
meta process, say p, is the parallel composition of several sub-
processes. The subprocesses are connected with each other by
channels. For example, a channel between port X of subprocess
p1 and port Y of subprocess p2 is created by the declaration

connect p1.X, p2.Y .

Ports X and Y are internal to process p. The ports that are not
internal to a meta process are, of course, external. The external
ports of a (simple or meta) process are declared in the heading
of the process declaration. A typical declaration heading is:

process p()(L? : int;R! : bool;S) .

The first pair of parentheses following the name p of the pro-
cess declares a list of meta parameters. (In this example, the list
is empty meaning that the process does not use meta parame-
ters.) Meta parameters are assigned a value when the process
is instantiated, and remain constant thereafter. For example, a
buffer process may be declared with an integer meta parameter
n that will define the size of the buffer (the number of buffer
stages) when it is instantiated.

The second pair of parentheses encloses the list of external
ports of process p. In this example, the ports have names L,
R, and S. The question mark following L identifies it as an
input port (receive port). The exclamation point following R
identifies it as an output port (send port). The type declarations
indicate that the messages received on L are of type integer,
and the messages sent on R are of type Boolean. Port S is not
identified as input or output: it is a synchronization port. No
data is transferred on S, and therefore no type is declared.

A group of ports of a process can be structured as a port array
or a port record. In an example, a process ring is declared as
having two port arrays U and D , as follows:

process ring(n)(U [1..n]?,D [1..n]! : type)

C. Meta-code and chp-code
There is a distinction between the “meta-code” and the “chp-

code”. A meta-process body may contain code used to expand
the process graph. This meta-code is not subjected to the same
restriction as the regular chp-code that is the body of simple
processes. The code of a meta process is executed during the
pre-processing phase and disappears after instantiation. In par-
ticular, it may contain recursion as we shall see in an example.
In practice, the combination of connect, connect-all, port array,
repetition and tail recursion is enough for the meta code to gen-
erate most regular graphs of interest.

D. Instantiation
A process declaration, say p, is always a declaration of a pro-

cess type p. The instantiation statement instance creates a pro-
cess of a given type. For instance, after process p has been
declared, two instances of type p are created by the command:

instance p1, p2 : p

The instantiation creates processes p1 and p2 and implicitely
composes them in parallel. The execution of a CHP program
can be understood as the following sequence of steps:

1) expanding the process graph by pre-processing all meta
code, i.e. instantiating meta processes (with actual val-
ues of meta parameters, if any) and simple processes, and
establishing port connections and channels,

2) expanding all remaining replications and macros inside
simple processes,

3) starting all simple processes. (The order in which the pro-
cesses are started is irrelevant.)

VI. EXAMPLES

Any process graph can be generated by just enumerating all
the processes by a sequence of instance commands, and all the
channels by a sequence of connect commands. But, for any-
thing but very simple process graphs, the designer may want to
exploit the structure of the graph, if any, and generate the pro-
cess graph by using repetition and recursion constructs, which
are allowed in the meta body. Here are some standard exam-
ples. (The unspecified port type type is used. A direction for
the ports has been chosen arbitrarily.)

A. A Two-Process Example
Process main is created as the concatenation of two pro-

cesses: p1 of type proc1 and p2 of type proc2, (see Figure 1):

process proc1()(L?,R! : type)
chp{. . .}
process proc2()(L?,R! : type)
chp{. . .}
process main()(W ?,E ! : type)
meta{instance p1 : proc1; p2 : proc2;

connect p1.R, p2.L; W , p1.L; E , p2.R
}

5

The connect statements are used in two different ways. The
statement connect p1.R, p2.L creates a channel by connect-
ing the output port R of p1 to the input port L of p2. In the two
other cases, the connect statement is used to identify a port of a
subprocess with an external port of the meta process. No chan-
nel is created. A connect statement used to create a channel
requires that the two ports be either both synchronization ports,
or one output port and one input port with the same data type. A
connect statement used to create an external port requires that
the two connected ports be of the same type: both synchroniza-
tion ports or same port directions and same data types.

1) Notation: The ports of a subprocess of a metaprocess are
identified in the connect statements of the metaprocess by pre-
fixing their name with the name of the subprocess: in the above
example, p1.R, p2.R, and p2.L. The ports of the metaprocess
are directly identified by their local name, in the above exam-
ple W and E , without the need to prefix them with the process
name.

Fig. 1. Process main as the composition of processes p1 and p2. Port R of p1
is connected to port L of p2 to form an internal channel of main. Port L of p1
becomes port W of main; port R of p2 becomes port E of main.

B. A Chain of Processes

As a generalization of the previous example, n simple pro-
cesses of previously-defined type proc1, are composed in a lin-
ear chain to create the meta-process chain .

process chain(n)(W ?,E ! : type)
meta{instance p[1..n] : proc1;

connect all i : 1..n − 1 : p[i].R, p[i + 1].L;
connect W , p[1].L; E , p[n].R
}

The simple processes used to construct the chain are declared
as an array p[1..n] of processes of type proc1. The connect
all statement connects a list of port pairs, here to create a list
of internal channels for each value of the running index i, in
the declared range, from 1 to n − 1. The following connect-
statement connects external ports W and E with ports p[1].L
and p[n].R of subprocesses p[1] and p[n].

C. A Ring of Processes

A ring of processes is composed of n elementary processes of
type proc3. A process of type proc3 has four ports L,R,U ,D ;
the ports L and R are connected in a ring, and the ports U and
D are left as external ports of the meta-process ring . Notice the
use of both port array and process array. See Figure 2.

process proc3()(L?,R!,U ?,D ! : type)
chp{. . .}
process ring(n)(U [1..n]?,D [1..n]! : type)
meta{instance p[1..n] : proc3;

connect all i : 1..n : p[i].R, p[(i + 1)modn].L;
p[i].U ,U [i];
p[i].D ,D [i]

}

Fig. 2. A ring of processes: Ports L and R of each process are used to connect
the processes in a ring. Ports U and D are left unconnected: Port U of process
p[i] becomes port U[i] in the port array U[1..n] of the meta process ‘ring’, and
similarly for D.

VII. CONCURRENT CHP: COMMUNICATION AND SLACK

In CHP, a communication action on a port is identified by
the name of the port. If port X is a synchronization port (no
data), a communication on X is identified in the program of
the process by the mere name X . The name of a port identifies
both the port in the process declarations and the communication
actions on that port in the program text.

Matching communication actions are mainly used to imple-
ment a form of distributed assignment statement, to “pass mes-
sages.” In that case, the pair of commands is specified to consist
of an input command (receive) and an output command (send)
by adjoining to them the symbols “?” and “!”, respectively: X!
denotes an output command (or send) on output port X , and Y ?
denotes an input command (or receive) on input port Y .

Matching communication actions can be used for synchro-
nization only, in which case the two commands are identified
by the name of the ports only, without input or output symbol.

A. Slack

If output port X of p1 has been connected with input port
Y of p2 to form a channel, then executions of action X in p1
are synchronized with executions of action Y in p2. For a com-
mand A, let cA denote the number of completed actions A at
some point of the computation. The weakest form of synchro-
nization between the send actions X and the receive actions Y
is that, at any moment, the number cY of completed receive
actions is at most equal to the number cX of completed send
actions:

cY ≤ cX

The difference cX − cY is the number of messages sent that
have not yet been received. The maximal value of cX − cY is
called the slack of the channel. The slack represents the amount
of buffering available in the channel.

(The notion of slack was introduced in [6].)

6

Allowing message buffering in the channels requires that
channels be implemented as storage devices. In view of our in-
tention to use communication as an elementary sequencing and
synchronization mechanism, we opt for as simple an implemen-
tation of channels as possible. The simplest implementation is
one in which no buffering of messages is required: slack zero.

For slack zero primitives, at any time, the number of com-
pleted X-actions in p1 is equal to the number of completed Y -
actions in p2; the completion of the n-th X-action “coincides”
with the completion of the n-th Y -action.

If, for example, p1 reaches the n-th X-action before p2
reaches the n-th Y -action, the completion of X is suspended
until p2 reaches Y . The X-action is then said to be pending.
When, thereafter, p2 reaches Y , both X and Y are completed.
The predicate “X is pending” is denoted as qX . A pair (X,Y)
of slack-zero communication commands satisfies the synchro-
nization properties:

cX = cY

¬qX ∨ ¬qY

VIII. SLACK ELASTICITY

Many properties of a CHP system will be proved true under
the assumption that all communications have slack zero. How-
ever, CHP processes to be implemented in VLSI are, except
in the most simple cases, subjected to decomposition transfor-
mations, like pipelining, that usually add slack to the channels.
The slack may also be increased to improve the performance
(throughput) of the system through the procedure called slack
matching and also to avoid deadlock.

The designer wants to be able to perform those transforma-
tions and be assured that the system still fulfils its specification
after the slack has been increased.

Slack Elasticity. A CHP system is said to be slack-elastic
when the slack of any channel can be increased by an arbitrary
finite amount without changing the correctness of the design.
• A deterministic system with no probed selection is slack-

elastic.
• A deterministic system with probed selection is not guar-

anteed to be slack-elastic as adding buffer on a probed
channel may change the result of the selection, and thus
the behavior of the system.

• A non-deterministic system is slack-elastic if adding
slack does not increase non-determinism: Any non-
deterministic choice (“a decision”) that is made after the
slack has been increased could have been made before in-
creasing the slack.[11]

The requirement of slack elasticity has a profound influence
on the CHP design style. In particular, it limits the use of the
probe and complicates the implementation of cosimulation in
CHPsim.

IX. THE BUFFER PROCESS

The term “buffer” (or “one-place buffer”, or “L/R-buffer”) is
used to describe a process that, in its simplest form, alternat-
ingly receives a message of a certain type, say type, on its input

port L, and sends the message received on its output port R. It
is described by the following CHP code:

process buf 1()(L? : type;R! : type)
chp{var x : type;

*[L?x ; R!x]
} .

The notion of slack extends from channel to process. A one-
place buffer is said to have slack one since 0 ≤ cL − cR ≤ 1.
When the process is in the state identified by the semicolon
between L and R, it is storing one token of data. A one-place
buffer added to a channel increases the slack of the channel by
one. The above solution requires an internal variable x of the
same type as the messages in order to buffer the last message
received and not yet sent. Such a buffering can be avoided. The
messag ereceived on L can be sent directly on R by writing the
body of the buffer as

*[R!(L?)] .

The construct R!(L?) is called the pass. However, there is an
important difference between the two solutions. In the pass
solution, the slack between L and R is zero. Reducing the slack
by the introduction of a pass can lead to deadlock.

X. INTERNAL CONCURRENCY: THE COMMA

So far, concurrency has only been possible between parallel
programs (processes) that do not share variables, hence eschew-
ing all conflicts related to concurrent reads and writes of vari-
ables. However, we cannot avoid introducing a restricted form
of internal concurrency between program parts inside a process,
hence opening the Pandora’s box of variable sharing. There are
two important reasons: efficiency and deadlock avoidance. We
will clarify the two motivations with an example. Internal con-
currency is denoted by the comma. Inside a process,

S1, S2

denotes the concurrent execution of S1 and S2. Internal con-
currency is defined only between non-interfering programs.

Non-interference between two programs S1 and S2 can be
enforced in two ways. (1) Local non-interference: any variable
x modified (written) in S1 is not used in S2 (neither written nor
read). (2) Global non-interference: variable x is written in S1
and used (written or read) in S2, but the accesses to x in S1
and S2 are in sequence. The sequencing of the accesses to x
is enforced through their ordering with communication actions
and rely on some proper ordering of those communications in
the environment.

The concurrent execution of two communications on the
same port of a process is excluded.

Local non-interference is more restrictive to the designer, but
also easier to verify. It suffices for the vast majority of the de-
signs.

As an example of locally non-interfering parallelism, con-
sider a process that repeatedly receives two integer values x
and y on ports X and Y , and sends the smallest of the two
values min(x , y) on port m , and the largest of the two values
max (x , y) on port M . In absence of the comma, the two re-
ceive commands X ?x and Y ?y on the one hand, and the two

7

send commands m!min(x , y) and M !max (x , y) on the other
hand, have to be sequenced in some order. With the comma,
the program becomes

process minmax ()(X ?,Y ? : type;m!,M ! : type)
chp{var x , y : type;

*[X ?x ,Y ?y ; m!min(x , y),M !max (x , y)]
} .

(The comma binds more tightly than the semicolon.) The
advantages are twofold. First, efficiency: ordering all four
communications would be quite expensive. Second, deadlock
avoidance: without the comma, one arbitrary sequencing has
to be chosen for the two receives and one for the two sends.
Suppose we choose X before Y . It may happen that the en-
vironment of minmax imposes an order on the two matching
send actions, say X ′ after Y ′, and this order is not known to the
designer of minmax . Then, our choice of ordering for X and
Y leads to deadlock. The comma makes it possible to adapt
the ordering of communications to the unkwnon choice made
by the environment.

An example of global non-interference will be described af-
ter we introduce the needed constructs of CHP.

In practice, determining whether the parallelism in an arbi-
trary program is non-interfering is intractable. As such, the de-
fault behavior of CHPsim is to unconditionally flag locally in-
terfering parallelism as an error. Variables that are intentionally
involved in local interference must be flagged so that CHPsim
can fall back to checking for interference via random sequenc-
ing.

XI. THE PROBE: PORT SELECTION

In order to satisfy the semantics of communication, a pro-
cess, say p1, reaching a communication action X must be able
to “decide” whether it may proceed with the execution of the
communication or suspend itself until the matching communi-
cation action Y in process p2 has been reached. In other words,
process p1 must be able to detect whether action Y is pending
in process p2. Hence, a process being suspended at a commu-
nication action must be an observable state: a process reaching
a communication action carries out a state transition. In CHP,
this state is exposed to, and used by, the designer: it is possible
to test in p1 whether communication action Y is pending in p2
by means of a Boolean command on ports, called the probe[9].
(It turns out that such a test is easy to implement in hardware.)

The definition of the probe states that the probe command X
in process p1 has the same value as qY , and, symmetrically, the
probe command Y in process p2 has the same value as qX . In
other words, the probe X evaluating to true in p1 means that a
communication on port Y is pending in p2.

Such a mechanism is particularly useful when a process en-
gaged in message exchanges with its environment may need to
detect on which port a communication with the environment is
to take place next. As we shall see, for a large class of deter-
ministic computations, this need can be answered by the use of
control messages on control channels. But this solution does
not apply to non-deterministic interactions (like external inter-
rupts for a microcontroller).

Any communication command can be probed (input or out-
put). And both sides of a channel can be probed. However prob-
ing both sides of a channel in the same communication leads to
deadlock. In practice, many designers restrict the use of the
probe to the input ports.

A. Example: Single-variable Register

The register-process controls a single variable x, for instance
a Boolean, that can be written (assigned a new value) through
input port X , or read through output port Y . The environment
has the initiative of reading or writing x. The register is a reac-
tive process. It detects whether the next action of the environ-
ment is a read or a write by probing the ports X and Y :

process reg()(X ?,Y ! : bool)
chp{var x : bool ;

*[[X −→ X ?x[]Y −→ Y !x]]
}.

This example shows that both input ports and output ports can
be probed. A deterministic selection has been used, under the
assumption that the environment never attempts to perform a
read and a write at the same time. If this assumption cannot
be made, then the non-deterministic selection has to be used in-
stead: in the above program, the “thick bar”[]has to be replaced
with the “thin bar” |.

B. Arbitration

The probe is particularly useful in conjunction with arbitra-
tion, i.e., when a non-deterministic choice has to be made be-
tween several conditions. In a system like a microprocessor,
non-deterministic choice occurs in two different contexts. First,
true non-determinism is caused by external signals like inter-
rupts and exceptions. Second, non-determinism may be intro-
duced for efficiency reasons. In the MiniMIPS, the data- and in-
struction caches share one single external interface (pins), and
therefore the acccess to the interface is arbitrated.

C. Probe and Stable Wait

The probe construct introduces a limited form of shared vari-
able: the process reaching a pending communication sets the
probe to true, while the process at the other end of the channel
reads the value of the probe. Does that mean that the designer
now has to worry about the issues related to shared variables
that communicating processes were meant to avoid? Fortu-
nately no, thanks to the notion of stable wait.

Negated probes are used only to enforce fairness, which is
seldom necessary. The most common use of the probe is in
guards where the probe is not negated. Since all other program
variables appearing in a guard have well-defined constant val-
ues at the point where the guard is evaluated, the guard can be
reduced to a Boolean expression in terms of probes only. Such
an expression can, for instance, be put in a canonical disjunctive
normal form in which no probe is negated. Let B(x1, . . . , xn)
be such an expression where x1, . . . , xn are the probes used in
B. Let X be the vector x1, . . . , xn. We introduce the ordering:
• false ≺ true ,

8

• For two vector values, U and V , of X

U � V ⇔ (∀i : 1..n : U.xi � V.xi) .

Then it is easy to prove the Guard Monotonicity Property:

(U � V)⇒ (B(U) � B(V)) .

Now assume that process p evaluates a guard B with probes
while the environment changes the values of the probes. The
environment can only change the values of the probes from
false to true while p evaluates B, since a probe is reset to false
only after the firing of the communication, i.e. after evaluation
of the guard.

Therefore, thanks to the monotonicity property, once B eval-
uates to true, it remains true even while some of the probes are
still changing: We say that the wait [B] is stable. Stability of
the wait is an essential property for reasoning about the probe
in CHP, and for implementing concurrent computation in hard-
ware without appealing to timing assumptions.

XII. VALUE PROBE AND PEEK

A. Value Probe

The value probe makes it possible to evaluate a predicate on
an input message while the communication is pending. Given
the input port L,

L : B(L)
def
= L ∧ B(L.val)

where L.val is the data value “pending on L.” More precisely,
if L holds for the n-th L-action and R!x is the matching n-th
R-action, then L.val = x .

Observe that L : ¬L means L ∧ (L.val = false), i.e., “com-
munication L is pending and the value of L is the Boolean
false ,” which is different from the negated probe ¬L meaning
“communication L is not pending.” The value probe cannot be
used with negated probe, since the value probe is defined only
when the probe is true.

For example, given the buffer *[L?x ;R!(parity(x))] , where
parity returns the value true if x is even and false if x is odd,
suppose we want to recode it without having to store the values
of x internally. With the value probe, we write:

*[[L : even(L) −→ R!true,L?

[]L : odd(L) −→ R!false,L?
]] .

The selection in the previous example is between two values on
the same ports. Therefore increasing the slack on that channel
will not change the behavior of the computation: the channel is
slack-elastic.

B. The Nyström Peek

The peek is an addition to CHP proposed by Mika
Nyström[12]. Since the value-probe construct makes it pos-
sible to read the current value of a message on a pending input
communication, say X , we can also assign this current value
to an internal variable. Peeking the value of input port X does
not complete the communication between X and Y : Y is still

pending after the peek. In terms of Hoare triples, the peek of
port X of channel (X,Y), denoted X¿ can is defined as:

{Y }X ¿x{Y ∧ (x = X .val)}

i.e., if Y is pending before the peek, then, after the peek, Y
is still pending and x has been assigned the value pending on
port X . The peek can be defined in terms of the value probe as
follows. Let {x1, x2, . . . , xn} be the range of values of x. The
peek X¿x is equivalent to the value-probe program:

[X : X = x1 −→ x := x1

[]X : X = x2 −→ x := x2
...

[]X : X = xn −→ x := xn
] .

The peek simplifies the implementation of inner loops as shown
in the next example. A process receives a message on input
port L and repeatedly sends it on output port R as long as the
Boolean c received on control port C is true. The first solution
is as follows:

*[[L?x ; c↑; *[c −→ R!x ;C ?c]]

But inner loops are notoriously annoying to implement in hard-
ware. A solution without inner loop is possible with the peek:

*[L¿;R!x ; [C : C = true −→ C ?

[]C : C = false −→ L?,C ?
]]

The commands L¿;R!x send on R the value pending on L,
without completing L. As long as c is true, the same value
of L is sent on R. When a false value of c is received, L is
completed, and thus the next value pending on L is sent on R.

The two solutions are not strictly equivalent. In the first solu-
tion, the communication on L completes immediately since the
value received is kept in x . In the second solution, the commu-
nication on L cannot complete immediately since it is the value
kept on L that is sent repeatedly on R until c false is received.
Only then does L terminate.

C. An Example of Global Non-Interference

As an example of global non-interference between two inter-
nally parallel sections of a process, consider the following CHP
of a two-port register file:

process Reg()(Rd !,Wr? : word ;Ri?,Wi? : {1..N })
chp{varri ,wi : {1..N };varreg[1..N] : word ;
*[Wi¿wi ;Wr?reg[wi];Wi],
*[Ri¿ri ;Rd !reg[ri];Ri]

}

This process itself does not force any ordering between the
two statements Wr?reg[wi] and Rd !reg[ri] that access the
elements of array reg. So it is up to the environment to ensure
global non-interference. This can be done by forcing strict se-
quencing on Rd and Wr, or by ensuring that concurrent use
of these ports take place only for different array indices (dif-
ferent elements of an array are considered different variables).
If actions Wr?reg[wi] and Rd !reg[ri] operate on the same

9

array elements (ri = wi), then the environment must enforce
sequencing between Wi and Ri.

XIII. TEMPLATED TYPE

Components like buffer, split, merge, stack are used over and
over again in various environments. The designer could save
considerable labor if the same code for a given type of compo-
nent could be reused in as many different contexts as possible.
One mechanism is already available that is helpful in that re-
spect: the meta parameter.

For example, buffers or stacks of any size can be described
by one piece of code as long as they differ only by their size,
here referring to the maximal number of data items they can
hold. Using the buffer description of 5.4.1, an instance of size
16 can be declared as

instance b16 : buf (16) .

However, all instances of a buffer must contain data of the same
type as the one specified in the buffer declaration. Being able
to change the type of the data handled by a component while
keeping its code unchanged significantly enlarges the class of
objects that can be specified by the same code.

The templated type is introduced for that purpose. During
a proces declaration, the unknown data type is declared in the
meta parameter section as a type. For instance, in the case of
the buffer we will write:

process buf 1(T : type)(L?,R! : T)
chp{var x : T ; *[L?x ;R!x]} .

The desired type is specified for each instantiation of a process
of type buf 1; for instance, a buffer passing integers will be in-
stantiated as:

instance b : buf 1(< int >) .

Several different templated types can be use in the same dec-
laration for different variables or ports of the process:

process proc(T1 : type,T2 : type)(L? : T1;R! : T2) .

XIV. CHP IN EXAMPLES

A. Merge, Split, and Toggle

Buffer, merge and split processes were by far the most com-
mon components in the design of the MiniMIPS.

1) Merge: The merge is a process with two input ports X
and Y , and an output port Z. The process outputs on port Z a
stream of messages which is an arbitrary merge of the stream of
messages received on X and the stream of messages received
on Y . The streams received on X and Y can each be empty,
finite, or infinite. Because of the possibility that no message
might be received on an input port in a current state of the sys-
tem, an input port has to be probed before each input commu-
nication on the port in order to avoid deadlock. In the absence
of any information on the environment, we have to assume that
both probes may be true at the same time if there are pending
communications on both input ports at the same time. We there-
fore have to use the arbitrated version of the selection statement.
The solution is the arbitrated merge

process amerge()(X ?,Y ?,Z ! : type)
chp{var u : type;

*[[X −→ X ?u;Z !u|Y −→ Y ?u;Z !u]]
} .

The process has the typical “reactive process” structure defined
earlier. Even though such a process is non-deterministic, it is
slack-elastic: adding slack to one of its input channels may
change the way in which the input streams are merged but since
the merge is non-deterministic, it does not matter.

In many cases, it is possible to guarantee that the environ-
ment never sends a message on both inputs of the merge at once.
The merge receives one message on one input port (never from
both at the same time) and sends the received message on its
output port. This probed merge can be described as follows:

process pmerge()(X ?,Y ?,Z ! : type)
chp{var u : type;

*[[X −→ X ?u;Z !u[]Y −→ Y ?u;Z !u]]
} .

This merge is no longer slack-elastic. Adding slack to an in-
put channel may change the order in which the input ports are
selected, or may violate the mutual exclusion between the in-
put ports. A standard way of making the merge slack-elastic is
by introducing an additional control channel that specifies from
which input channel (X or Z) to expect the next item. This
solution, which eliminates the probed selection, is called con-
trolled merge:

process cmerge()(X ?,Y ?,Z ! : type;C ? : bool)
chp{var u : type; c : bool ;

*[C ?c; [c −→ X ?u;Z !u[]¬c −→ Y ?u;Z !u]]} .

2) Split: The split process has one input port X and two
output ports Y and Z . The messages received on X are sent on
Y or Z . Which output is chosen is decided by the environment.
The first technique for the choice of output is the probe. We get
the probed split

process psplit()(X ?,Y !,Z ! : type)
chp{var u : type;

*[[Y −→ X ?u;Y !u[]Z −→ X ?u;Z !u]]
} .

The receive action X ?u can also be placed before the probed se-
lection. Similarly to the merge, the split can also be controlled
by a control port C . This controlled split is as follows:

process csplit()(X ?,Y !,Z ! : type;C ? : bool)
chp{var u : type; c : bool ;

*[C ?c,X ?u; [c −→ Y !u[]¬c −→ Z !u]]
} .

In all above solutions for the merge and split, the receive-send
sequences, like X ?u;Y !u , can be replaced by the pass con-
struct, in this case Y !(X ?), with the associated loss of slack.
Merge and split are the main building blocks for buses.

3) Toggle: An input toggle toggle in is a restricted form of
a merge. It has two input ports X and Y , and an output port Z.
The process outputs on port Z a stream of messages which is a
merge of the stream of messages received on X and the stream
of messages received on Y . But now the messages are input

10

alternatingly from X and Y starting with X . The process can
be coded as

process toggle in()(X ?,Y ?,Z ! : type)
chp{var u : type;

*[X ?u; Z !u; Y ?u; Z !u]
} .

An output toggle toggle out is a restricted form of a split. It has
one input port X , and two output ports Y and Z. The messages
received on X are sent alternatingly on Y or Z . The process
can be coded as

process toggle out()(X ?,Y !,Z ! : type)
chp{var u : type;

*[X ?u; Y !u; X ?u; Z !u]
} .

Both toggle processes can be fit into a buffer template by
introducing a Boolean variable c, initially true . We describe
the output toggle only. We get

*[X ?x ; [c −→ Y !u, c↓[]¬c −→ Z !u, c↑]] .

Alternatively, we can introduce the control process *[U ;V] to
implement the two phases of the toggle:

*[X ?u; [U −→ Y !u,U[]V −→ Z !u,V]] .

(U and V are synchronization channels.)

B. Buffers
1) Linear Buffer of Size n : An n-place buffer can store up

to n messages. Such a buffer can be constructed as the linear
composition of n one-place buffers. For n > 1, it can be de-
scribed as the recursive composition of a one-place buffer and
a buffer of size n− 1.

process buf (n)(L?,R! : type)
meta{instance p : buf 1;

[n = 1 −→ connect {p.R, buf (n).R;
p.L, buf (n).L}

[]n > 1 −→ instance q : buf (n − 1);
connect{p.R, q .L; p.L,L; q .R,R}

]

}
2) Circular Buffer: Alternatively, a buffer of size n can be

constructed as a single process using an array b[0..n − 1] of
data items of the same type as the messages. The array is used
in a circular way. Pointer i points to the next free position in
the array, and pointer j points to the next (the oldest) occupied
position in the array. Both pointers point to the same array po-
sition when the array is full or empty.

process cirbuf (n)(L?,R! : type)
chp
{var i , j , k : {0..n − 1}; b[0..n − 1] : type;
i := 0, j := 0, k := 0;

*[[L ∧ k < n −→ L?b[i]; k := k + 1; i := (i + 1)modn

[]R ∧ k > 0 −→ R!b[j]; k := k − 1; j := (j + 1)modn
]]}

If the buffer is initially empty, i and j should be initialized to the
same (arbitrary) value in the range 0 to n − 1, and k is initially
0. For simplicity, we have initialized all three to 0.

3) Tree Buffer: The latency of a data item traveling through
a linear n-place buffer may become prohibitive when n is large.
The circular buffer does not suffer from this problem, but the
cost of incrementing the two pointers and of the addressing
mechanism may offset the latency advantage. A better solution
for n large is the “tree buffer.” Assume n is a power of two. The
buffer is partitioned into two buffers of size n/2, say B0 and
B1. Data items are added alternatingly to B0 and B1, for in-
stance B0,B1,B0,B1, ..., and they are removed alternatingly
from B0 and B1 in the same alternation: B0,B1,B0,B1,
Hence, the FIFO property of the buffer is maintained, assuming
that B0 and B1 are themselves FIFO buffers.

The alternation on the input side of B0 and B1 is realized
by an output toggle whose first output port is connected to the
input port of B0 and whose second output port is connected to
the input port of B1. The alternation on the output side of B0
and B1 is realized by an input toggle whose first input port is
connected to the output port of B0 and whose second input port
is connected to the output port of B1.

process treebuf (n, k)(L?,R! : type)
meta{instance t1 : toggle out ; t2 : toggle in;

[k = 2 −→ instance b0, b1 : buf (n/2)
[]k > 2 −→ instance b0, b1 : treebuf (n/2, k/2)
];
connect{t1.Y , b0.L; t1.Z , b1.L;

t2.X , b0.R; t2.Y , b1.R;
t1.X ,L; t2.Z ,R}

}

C. Bit Router in Mesh Structures

The goal is to construct the node of a routing network which
communicates data between the different components of a dis-
tributed system, e.g., a network on chip. The data items are
partitioned into a string of Boolean messages that together con-
stitutes a packet. A packet is composed of a header containing
the destination address of the packet, a number of messages
containing the data, and a trailing token indicating the end of
the message string. A router can receive a packet from one of
two network inputs and can send a packet to one of two network
outputs. A router can also receive a packet from its compute
port in, and send a packet to its compute port out.

The router is built out of two components: a switch and a
selector. A two-dimensional mesh router needs two switches
and two selectors. The processor injecting a message into the
network prefixes the message with a string of bits (the header)
specifying the path the message will travel through the network;
and it appends a trailing token to mark the end of the packet.
The selector has two input ports and one output port and trans-
mits an entire packet from the selected input port to the out-
put port. Packets from different input ports are not interleaved:
Once the selector has chosen an input port, it keeps sending the
message from this port until it reaches the end-of-packet token.
The switch has one input port and two output ports. It consumes
the first bit of the packet received on its input port, and based
on whether the bit is zero or one, passes the remainder of the
packet out through either of its two output ports until the token
is transmitted.

11

process selector()(A?,B?,C ! : {0, 1,F})
chp{var x : {0, 1,F};

*[[A −→ A?x ;C !x ; *[x 6= F −→ A?x ;C !x]

|B −→ B?x ;C !x ; *[x 6= F −→ B?x ;C !x]
]]

} .

process switch()(X ?,S !,T ! : {0, 1,F})
chp{var x : {0, 1,F};

*[X ?x ;
[x = 1 −→ *[x 6= F −→ X ?x ;S !x]
[]x = 0 −→ *[x 6= F −→ X ?x ;T !x]
]]

} .

XV. COSIMULATION

As Dijkstra said “Testing can show the presence of bugs but
not their absence”. Some day, verification and correctness-by-
design may be enough to guarantee the functionality of a large
system, but not yet. Meanwhile, simulation can be used to both
estimate the performance of a system (by augmenting the code
with timing information) and debug it. CHPsim serves both
purposes. CHPsim also provides some of the syntactic and run-
time checks of a normal compiler: data type and range check-
ing, type mismatch between connected ports, dangling ports,
etc. CHPsim is also used to detect and locate deadlock. A more
interesting and original function of CHPsim is cosimulation,
which describes the simulation of a concurrent CHP system in
which different parts of the system are at different stages of the
QDI synthesis.

In the Caltech synthesis method for QDI, a system, for in-
stance a microprocessor, is first described as a sequential CHP
program; it is then decomposed into a fine-grain collection of
CHP processes by a series of CHP-to-CHP transformations,
called process decomposition. The next two steps realize the
two main transformations necessary to implement a CHP pro-
gram as a digital VLSI system. All target VLSI implementa-
tions have two main restrictions with respect to CHP: they allow
only Boolean variables, and sequencing is not a primitive oper-
ation (while parallelism is). The next step transforms a CHP
process into what we call a handshaking expansion or HSE,
by reducing all operations (communications, and logical and
arithmetic operations) to operations on Booleans. The follow-
ing transformation eliminates all sequencing (all semicolons)
from a HSE code by introducing a entirely concurrent language
based on a single primitive operation called production rule. A
program is a production rule set (PRS).

Cosimulation is the simulation of a system in which some
components are in CHP, while others are in HSE or PRS repre-
sentations. (SPICE will be added later.)

The translation from CHP to HSE and from HSE to PRS fur-
ther relaxes the strict segregation of variables enforced by mes-
sage passing—and which has already been breached by inter-
nal concurrency. The implementation of communication with
handshake protocols introduces a restricted form of shared vari-
ables among two processes. A variable x that is part of a hand-
shake protocol is set (x↑ or x↓) by one process and read ([x]
or [¬x]) by the other process. This special type of shared

Boolean variable is called a wire in CHPsim. The class of hand-
shake protocols for QDI design are such that the waits on HSE
wires are always stable. Typically, a four-phase handshake as
described, for instance, in [10] is used, so a process like:

process Source()(O ! : 0..1)
chp{*[O !0]}

can be written as:
process Source()(O ! : (e↓; d[0..1]↓))
hse{*[[O .e];O .d[0]↑; [¬O .e];O .d[0]↓]}

process body, but the external interface of the process (the ex-
ternal ports) is now defined in terms of wires. In this example,
the Boolean port O is implemented with three wire variables:
the enable wire e initialized to zero, and the data wires d[0]
and d[1] also initialized to zero.

A production rule consists of a guard and a target. The guard
is an expression just like in a guarded command, and the target
is an assignment to a single wire in shorthand (↑/↓) notation.
The same Source process is implemented as two inverters in
sequence (A description of production rules can be found in
[10]).

process Source()(O ! : (e↓; d[0..1]↓))
prs{var x↑;

O .e −→ x↓ ¬x −→ O .d[0]↑
¬O .e −→ x↑ x −→ O .d[0]↓

}

At the PRS level, a variable could be assigned concurrently
by two different production rules since all production rules are
potentially concurrent. This form of interference must be ex-
cluded and the stability of guards must be guaranteed. Stability
and non-interference of a PRS are enforced by the synthesis
procedure, but are easily violated during manual synthesis.

Running a cosimulation requires that CHPsim provide an in-
terface between a CHP process on one side and an HSE or PRS
process on the other side. A special interface process is inserted
on the channel which can execute a CHP communication on one
side and a handshake protocol on the other. A difficulty is that
the slack of the original channel may be increased in a subtle
way, which may hide some deadlock situations.

With these constructs and requirements on stability and non-
interference, CHPsim has the ability to decompose a fully se-
quential CHP description of a large-scale system into a com-
plete, explicit hardware-implementable description of the same
system, and the ability to do so entirely via simple, local trans-
formations of the code. Each transformation can be tested and
debugged independently of other transformations, and a thor-
ough testbench for the original CHP description is generally
sufficient for testing all decomposition levels down to the final
version.

XVI. CONCLUSION

CHP has already proved its usefulness through multiple suc-
cessful designs of large systems. In particular, it is an almost
ideal formalism for the decomposition of a large sequential
code into a collection of fine-grain processes. In that context,
even the austere syntax is an advantage for the quasi-algebraic
manipulations of CHP code.

12

We also believe that it is not practical or wise to try and ex-
press the whole synthesis of a VLSI system from a high-level
specification entirely within one single notation: the hierarchy
of the three notations—CHP, HSE, PRS—is a better solution.

The design of a programming language is a difficult compro-
mise between simplicity and soundness on the one hand, and
expressive power on the other hand. We are confident that the
version of CHP that we now present to the community is a good
choice in that respect and that few further adjustments will be
required.

ACKNOWLEDGMENTS

Many students have contributed to the design and refinement
of CHP. It is impossible to name them all. Marcel van der Goot
was the designer of the first version of CHPsim, and as such had
an important role in the definition of the language. Acknowl-
edgment is due to Sean Keller for his comments on the paper.
The research described in this paper was supported by a grant
from the National Science Foundation.

REFERENCES
[1] A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, P.J. Hazewindus. The

Design of an Asynchronous Microprocessor. Decennial Caltech Confer-
ence on VLSI, ed. C.L.Seitz, MIT Press, 351-273, 1989.

[2] Steven M. Burns and Alain J. Martin. Syntax-directed Translation of
Concurrent Programs into Self-timed Circuits. Proc. Fifth MIT Confer-
ence on Advanced Research in VLSI, ed. J. Allen and F. Leighton, MIT
Press, 35-40, 1988.

[3] Marcel van de Goot, revised by Chris Moore. CHPsim A Simulator and
Debugger for the CHP Language–User Manual. California Institute of
Technology, 2002-2008.

[4] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engle-
wood Cliffs NJ, 1976.

[5] C.A.R. Hoare. Communicating Sequential Processes. Comm. ACM 21,8,
pp 666-677, 1978.

[6] Alain J. Martin. An Axiomatic Definition of Synchronization Primitives.
Acta Informatica 16,219–235, 1981.

[7] Alain J. Martin. The Design of a Self-timed Circuit for Distributed Mu-
tual Exclusion. 1985 Chapel Hill Conference on VLSI, ed. Henry Fuchs,
Computer Science Press, 247-260, 1985.

[8] A. J. Martin, A.Lines, R.Manohar, M.Nyström, P.Penzes, R.Southworth,
U.Cummings and T. K. Lee. The Design of an Asynchronous MIPS
R3000 Microprocessor. Proc.17th Conf. on Advanced Research in VLSI,
IEEE Computer Society Press, 164-181, 1997.

[9] Alain J. Martin. The Probe: An Addition to Communication Primitives.
Information Processing letters 20, pp 125-130, 1985.

[10] Alain J. Martin and Mika Nyström. Asynchronous techniques for system-
on-chip design Proceedings of the IEEE Vol.94,6:1089-1120, June 2006.

[11] Rajit Manohar and Alain J. Martin. Slack Elasticity in Concurrent Com-
puting. Proc. 4th Intern. Conf. on Mathematics of Program Construction,
LNCS 1422, J. Jeuring ed., Springer-Verlag, 1998.

[12] Mika Nyström and Alain J. Martin. Asynchronous Pulse Logic. Kluwer
Academic Publishers Boston, 2001.

[13] M. Renaudin, P. Vivet, F. Robin. ASPRO: An asynchronous 16-bit RISC
microprocessor. Proc. ESSRCIRC99, September 1999.

[14] Rajit Manohar and C. Kelly IV. Network on a chip: modeling wire-
less networks with asynchronous VLSI. IEEE Communication Magazine,
November 2001.

[15] Hubert Garavel, Gwen Salan, Wendelin Serwe. On the semantics of com-
municating hardware processes and their translation into LOTOS for the
verification of asynchronous circuits with CADP Science of Computer
Programming, Vol.74,3,100-127, 2009.

[16] K.A.Boahen. A Burst-mode word-serial address-event link IEEE Trans.
on Circuits and Systems, July 2004.

[17] G.N. Patel, M.S. Reid, D.E. Schimmel, S.P. DeWeerth An Asynchronous
Architecture for Modeling Intersegmental Neural Communication IEEE
Trans. on VLSI Systems, V.14, No.2, Feb. 2006

