A Failure-Free Synchronizer

Mika Nystrom, Rajit Manohar, Alain J. Martin

Abstract— A synchronizer is a circuit that can sample an
arbitrary unstable input signal. We present the first syn-
chronizer without transistor-strength ratioing assumptions
that is shown to allow zero probability of system failure
when used in a fully asynchronous system. We present two
solutions to the problem, differing in the degree of detailed
timing design required.

Keywords— Asynchronous VLSI; arbitration; metasta-
bility; synchronization failure; interrupts; quasi delay-
insensitive

I. INTRODUCTION

This paper introduces solutions to the problem of sam-
pling a digital signal whose value may change at any time
without waiting for an acknowledgment from the sampling
circuit. In the asynchronous literature, a circuit that sam-
ples such a signal is called a synchronizer. This problem
appears deceptively simple, yet no entirely satisfactory so-
lution has been presented until now.

The synchronizers that we describe are more powerful
devices than the synchronizers used in clocked systems or
the well-known arbiters (mutual-exclusion elements) used
in asynchronous systems. Clocked synchronizers (cascaded
latches or flip-flops) are able to sample asynchronous in-
puts whether those inputs are stable (i.e., require an ac-
knowledgment between each change in value) or not with
a small but finite probability of synchronization failure,
which might be catastrophic. Asynchronous arbiters that
select between two stable inputs, on the other hand, may be
designed with zero probability of catastrophic system fail-
ure. What we are discussing in this paper is a device that
goes beyond the standard asynchronous arbiter to sample
arbitrary, unstable inputs, while maintaining zero proba-
bility of system failure (as long as the components are reli-
able). The only previously known circuits that accomplish
this task have several drawbacks: they are difficult to de-
sign and they consume static power.

In an event-driven asynchronous system, circuit mod-
ules are allowed to take as much time as they please to
make their decisions. This property is what allows an asyn-
chronous arbiter to avoid synchronization failure. However,
if the input that is to be sampled can change from true to
false and vice versa at any time, the arbiter can still glitch,
and this has been an unsolved problem. For instance, Mar-
shall et al. are faced with an asynchronous request signal
that may be withdrawn at any time [5] and attempt to
sample it with an arbiter. Their solution is to perform a
hard system reset if the request is withdrawn.

Mika Nystrém and Alain J. Martin are with the Computer Science
Department of the California Institute of Technology, Pasadena, CA
91125, U.S.A. Rajit Manohar was with the Computer Science Depart-
ment of the California Institute of Technology, Pasadena, CA 91125;
he is now with the Computer Systems Laboratory in the School of
Electrical Engineering at Cornell University, Ithaca NY 14853, U.S.A.

The structure of this paper is as follows. We first give a
brief historical overview of the problem. Secondly, we spec-
ify the properties of a synchronizer, especially how they
relate to the relative timing of the control signal and the
input signal. Thirdly, we describe an older solution to the
problem and expose its flaws. Fourthly, we describe a top-
down solution to the problem that is efficient but depends
on relative timing information related to the physics of the
circuit elements. Fifthly, we present a conservative solution
that is correct given a liberal delay model for the compo-
nents. Sixthly, we present some variations on the conser-
vative design. Lastly, we show some simulation results.

A. History

In the late 1960’s, designers of synchronous systems that
engaged in high-speed communications between indepen-
dent clock domains found a new class of problems related
to accepting an unsynchronized signal into a clock domain.
A device that can reliably and with bounded delay order
two events in time cannot be constructed under the as-
sumptions of classical physics. The basic reason for this is
that such a device would have to make a discrete decision—
which event happened first—based on a continuous-valued
input—the time. Given an input that may change asyn-
chronously, if we attempt to design a device that samples
its value and returns it as a digital signal, we must accept
that the device either may take unbounded time to make
its decision or that it may sometimes produce values that
are not legal ones or zeros but rather something in between.
The failure of such a device to produce a legal logic value
is called synchronization failure; Chaney and Molnar pro-
vided the first convincing experimental demonstration of
synchronization failure in 1973 [1]. Synchronous design-
ers must accept a certain risk of system failure, which can
be traded against performance, as discussed in the litera-
ture [12].

Synchronization failure may be avoided by making the
sampling system completely asynchronous. In such a sys-
tem, no clock demands that the system make its decision
after a certain, fixed amount of time and system opera-
tion can be suspended until the decision has been resolved.
The device that determines whether a particular event hap-
pened before or after another is called an arbiter. A typical
CMOS arbiter is shown in Figure 1. This is the familiar R-
S latch with a filtering circuit on the output. In contrast to
how this device is used in synchronous circuits, the arbiter
is allowed to go into the metastable state if the two inputs
arrive nearly simultaneously. The filtering circuit on the
output (a pass-gate-transformed pair of NOR gate/inverter
hybrids) ensures that the arbiter outputs u and v do not
change until the internal node voltages are separated by at
least a p-transistor threshold voltage—which means that

filter

Fig. 1. “Mead & Conway” CMOS arbiter.

the internal nodes have left the metastable state. At that
time, the arbiter has “made up its mind,” and there is no
possibility of an output glitch.

If the rest of the system waits until the arbiter asserts
one of its outputs, which could take forever, then there is no
possibility of synchronization failure. We stress that even
though the arbiter could take forever, in practice, it rarely
takes very long to exit the metastable state. In fact, this
is the reason that asynchronous implementation of systems
that require arbitration is attractive—the average delay of
the arbiter is likely to be much smaller than the latency
that would be required to reduce the probability of syn-
chronization failure in a synchronous implementation to
acceptable levels.

The proper operation of the arbiter circuit depends on
the fact that the inputs are stable, i.e., that the inputs re-
main asserted until the arbiter has acknowledged the input
by making its decision. If one of the requests is withdrawn
before the arbiter has made its decision, the arbiter may
fail (one or both of the outputs may glitch), and this is the
source of Marshall’s conundrum. Figure 2 shows an exam-
ple of what happens if an unstable input is sampled with a
normal arbiter. In this figure, Go represents the input to
the arbiter, a 100 ps pulse, z.r1_ represents the switching
internal node (between the R-S latch and the filter stage),
and z.z1 represents the output, which glitches.

Expressed as a Production Rule Set (PRS)[9], the simple
CMOS arbiter may be written

aAt — sl
bAs — tl
—aV -t — st
bV -os =t

A rule G — s means that the variable s is set to false
when the condition G is true. Rules of the form G — sl
correspond to pull-down chains, and G + s?1 correspond to
pull-up chains. These production rules correspond to the
circuit shown in Figure 1. This circuit exhibits metastabil-
ity when both @ and b are true simultaneously. A filtering
prevents the outputs from changing until the arbiter has
left the metastable state.

35

T
"<t Go"

43 4.4 45

Fig. 2. Waveforms of a misbehaving arbiter.

The arbiter is specified by the following handshaking ex-
pansion (HSE)[9]

*[[a — ut; [al;ul
[b — v1; [-0]; 0l
1]

B. The QDI Model

Although a comprehensive survey of the different asyn-
chronous design styles is outside the scope of this paper, we
shall make reference to the assumptions satisfied by one of
these styles, namely the quasi delay-insensitive (QDI) de-
sign style. (A more comprehensive survey has been carried
out by Hauck [10].) A QDI system is one whose correct op-
eration does not depend on the physical delay of operators
(active elements) or wires, with the exception of certain
wires called “isochronic forks” that are arranged so as to
be fast compared to the circuitry with which they commu-
nicate [11]. One of the authors has shown that without
the isochronic fork assumption, the class of circuits that
is possible to prove correct is severely limited [11]; with
the isochronic fork assumption, large asynchronous systems
have been built, and their performance is excellent [6].

Violations of the isochronic fork assumption can occur
in two ways. The first is, obviously, that an isochronic fork
may extend over a large distance, and the signals at the
“tines” of the fork are consequently delayed by different
amounts. In large systems, we avoid making the isochronic
fork assumption on long wires, although we sometimes find
that the extra cost of verifying the assumption is out-
weighed by a more convenient circuit implementation (for
example, in the case of busses). The second way that the
isochronic fork assumption can be violated is more sinister.
In any digital system, the logic threshold of every operator
will not be the same as that of every other operator—this
is particularly the case if early-threshold gates, due to dy-
namic circuit implementations, are mixed with combina-
tional logic, as is often true in asynchronous systems. We
must therefore ensure that logic transitions on isochronic
forks are fast compared with the delay of the gates attached
to the outputs of the fork.

C. The Synchronizer

The synchronizer has two inputs: a control input and
an input signal that is to be sampled. The specification of
the synchronizer is, informally, that it waits for the control
signal to be asserted and then samples the input. We are
attempting to build the circuit so that it can be part of
a QDI asynchronous system; therefore, the synchronizer
produces a dual-rail output with the two rails representing
the value of the sample input: either true or false.

Using handshaking expansions, the program for the syn-
chronizer is given by

*[[re A~z — r0?t; [—rel; 0]
[re Ax — r1f; [—rel; rl]
1]

where z is the input being sampled, re is the control in-
put, and the pair (r0,r1) is the dual-rail output. When
the environment asserts re, the synchronizer springs into
action and samples z, returning the observed value by as-
serting either 70 or r1. What makes the implementation
of this circuit challenging is that z may change from true
to false and vice versa at any time. If the input has a
stable true value within a finite, bounded interval around
the time the control input arrives, the circuit asserts r1;
if the input is a stable false, the circuit asserts r0; other-
wise, the circuit asserts either 70 or 71, but not both. In
practice, the “confusion interval” will be a very short time
indeed, approximately the delay of the single inverter used
to invert the input. The confusion interval is analogous to
the setup and hold times of a latch; however, as opposed
to a latch, the synchronizer is required to operate correctly
(albeit non-deterministically) even if the input changes in
this interval.

The difficulty in the implementation of the synchronizer
lies with the behavior when the input changes during the
confusion interval. In fact, the specification allows the in-
put to be an arbitrarily narrow pulse, among other dis-
concerting signals. All that is really required of the input
is that it be within the range of safe device operation to
prevent the circuit from being damaged.

D. Motivation

One may wonder why it would ever be necessary to have
to sample a completely unsynchronized external signal. Af-
ter all, if the signal changes, the synchronizer picks an ar-
bitrary value, and an input value may be forever lost—how
can this possibly be a useful behavior? The answer is that
the ability to handle a withdrawn request is sometimes part
of a specification. The MIPS ISA, for instance, allows an
external interrupt request to be withdrawn at any time [2].
For this reason, a synchronizer circuit similar to the ones
presented in this paper was used to implement the inter-
rupt mechanism in the MiniMIPS processor designed at
Caltech. Also, a mechanism similar to the sequenced with-
drawal of requests mentioned in Section III-A was used
to implement the arbitrated exception mechanism of the
MiniMIPS processor. The MiniMIPS processor was suc-
cessfully fabricated in 1998.

E. Our previous solution

One of the authors has previously presented a solution
to the synchronizer problem [7]. This circuit has been used
in successful chip projects, but alas, it is incorrect. The
reason it is incorrect is subtle, and the analysis used to
uncover the problem will turn out to be useful later. The
PRS for the incorrect synchronizer is [9]:

T =zl
-z = z_1
rAre ANt — si
T_AreNs — tl
—reV -t — st
—re Vs = th

This synchronizer is incorrect because it lacks a metastable
state. In scenarios in which z changes close to the time
when the sampling request on re arrives, we know that the
synchronizer must enter a metastable state, since otherwise
we would have built a bounded-delay synchronizer, and
this is impossible [4]. If we consider the situation when
z = false and re = true, we can simplify the production
rules to:

s = tl
-t +— st
—s = t1

At first glance, this seems good. Clearly, the only stable
state for this PRS is s = true, ¢t = false, which is the
desired outcome when z is false. However, if the device has
only one stable state, then calculus tells us that it cannot
have a metastable state, and thus it cannot possibly be a
synchronizer.

We can go a step further and determine in what way
the “synchronizer” fails. The production rules prevent it
from producing an illegal result, but we have shown it to be
incorrect. The only way to reconcile these facts is that the
device enters a deadlocked state under some circumstances.
To see how this may happen, assume that z is true when
re is asserted—s will begin to fall. If z changes to false
before s has fallen all the way, then ¢ will begin to fall,
but if s has fallen far enough before this happens, then the
device may get stuck in a state in which both s and ¢ are
in the intermediate range between a legal logic zero and
a legal logic one. (Please note that this deadlocked state
is mot the same as a metastable state: a metastable state
is one that is dynamically unstable but that might hold
for an unknown, although usually short, period of time;
in contrast, this deadlocked state, once entered, cannot be
exited.)

F. The solution of Rosenberger et al.

In their 1988 paper on @-Modules, Rosenberger, Molnar,
Chaney, and Fang presented a synchronizer circuit that
satisfies the specification we have given here. Their design
uses what is essentially a sense amplifier built out of two
inverters as a central element. The inverter outputs are
perturbed by the input signals, and the outputs are then
filtered through the same kind of circuit used in the CMOS

1
S

S

o
B
T "

DATA

Fig. 3. Synchronizer of Rosenberger et al.

arbiter. The central part of Rosenberger et al.’s solution is
shown in Figure 3 (the filtering circuit is not shown): the
input is applied at DATA; the input is sampled on a falling
edge of CLOCK. The problem with this circuit should
be immediately evident: for it to operate correctly, cer-
tain transistors—nFETs marked w in the diagram—must
be weak compared to the sense amp inverters’ pFETSs; an-
other transistor—an nFET marked s in the diagram—must
be strong. Setting up the required transistor-strength ra-
tios is difficult; guaranteeing that they hold over a range of
manufacturing and operating parameters is almost impos-
sible [3]: Rosenberger et al. dedicate several pages to this
matter. Finally, this circuit also draws static power when
the CLOCK is active. In contrast, the solutions studied
in the present paper neither have ratioing assumptions nor
draw static power.

II. TOP-DOWN DERIVATION OF A SYNCHRONIZER

By keeping in mind the metastability argument of the
previous section, we arrive at a correct synchronizer design
through a top-down derivation.

The synchronizer is given by the following handshaking
expansion:

SYNC = *[[re A x — r0%1; [—rel; 0]
[re A~z — r11; [—rel; rl]
1]

whose environment is described by
ENV =*[ret; [rOV r1];rel; [-rOA —r1]] .

From the metastability analysis of our previous, direct im-
plementation of SYNC, we conclude that we cannot ar-
bitrate between the two conditions re A z and re A —z.
Instead, we introduce explicit signals a0 and al that are
used to hold the values re A —z and re A x respectively. We
augment SYNC with assignments to a0 and al:

SYNC1 =

*[[re A =z —> a01; [a0]; 7075 [—rel; a0l; [—a0]; r0)
[re Az — alt; [all; r1t; [—rel; all; [—all; rl]
1]

We introduce an explicit handshaking expansion to use the
newly introduced signals a0 and al to produce outputs r0
and r1. The result is:

SYNC2 = x[[re A~z — a0?; [-rel; a0l
[re A x — alt; [—rel; all
1]

SEL =*[[a0 — r01; [-a0]; r0)
Dol — r11; [—all; rld
1]

SYNC1= SYNC?2 || SEL

(The bar “[I” means that both a0 and al cannot be high at
the same time when SEL is executing the selection state-
ment.) We would like to arbitrate between a0 and al in-
stead of between re A —z and re A z, and not implement
SYNC2 as written. Instead of SYNC2, we use the fol-
lowing production rules that permit the different parts of
SYNC?2 to execute concurrently. Specifying the circuit be-
havior as a handshaking expansion is cumbersome, so we
proceed directly to the production rules:

re Az — a0t
-re — a0l

re ANz — alt
—re — all

To make the rules CMOS-implementable, we introduce an
inverter to generate z_ in the first production rule. Given
that these rules all execute concurrently, we examine the
behavior of SEL in greater detail.

Signals a0 and al are independent from each other, in
the sense that they can be both true at the same time if z is
sampled during the confusion interval. Also, because z can
be sampled during a transition, the transitions a01 and a1t
are not always completed, but we assume that at least one
of them completes eventually. The circuit considerations
that enable this assumption are discussed in Section TI-A.

SEL is similar to but not identical to an arbiter. In
an arbiter, when both inputs are high, the arbiter selects
both inputs one after the other in arbitrary order since a
request is never withdrawn (see Section I). In SEL, on the
other hand, when both inputs are high, only one should be
selected. Hence, we must check that both a0 and al are
false before resetting the output of SEL. The new process
is:

SEL =*[[a0 — r07; [-a0 A =al]; 0]
lal — r11; [—al A —a0]; r1]
1]

“l”

(Note that we have re-introduced the indicating that
the selection between a0 and a1 is non-deterministic.) SEL

4

»
o

jgﬁv

4{

—a

Fig. 4. Synchronizer

can be implemented directly as a bistable device, and the
production rules are:

rl_A a0 — r0_]
—rl_V (ma0 A —al) — 701

r0O_Aal —» 71_}
-r0-V (mal A —a0) — 711

The circuit corresponding to the production rule set for
the synchronizer is shown in Figure 4, where we have added
the filter stage necessary to block the metastable state from
reaching the digital outside world.

A. Analysis

Recall that the circuit discussed in Section I-E did not
exhibit metastability, and that this led to incorrect opera-
tion. We examine the behavior of the circuit shown above
under similar conditions.

When both a0 and al are true, the production rules
reduce to:

rl_ — r0_.]
—rl_+— r04

r0- — rl_]
=r0- — r1t

This is a pair of cross-coupled inverters, a bistable device
that exhibits metastability. Therefore, we do not have the
same problem as the circuit in Section I-E.

Finally, we have to check whether the pullup/pulldown
pairs for 70_ and r1_ have to be staticized. Let us do the
analysis for r0_. Starting in the initial state, r0_ is pulled
down by r1_A a0; r0_ can be left floating in the state
r1_A —a0 A al. But in this state —re holds, and therefore
the transition al] is enabled. Hence the floating state does
not persist, and staticizers are not needed.

The input z does not have to be stable (i.e., it can oscil-
late arbitrarily, not just transition once) since the condition
that a0 and al be pulled up monotonically still holds.

While the metastability analysis shows that process SEL
cannot fall victim to the same problem as circuit in Sec-
tion I-E, SEL has a still more subtle analog problem. If we
are to satisfy the requirements that the circuit be correct
under the stringent assumptions of the QDI design style,
we find that there is a problem when resetting the device.
In simple terms, if, e.g., the output r0 is asserted, we know
that the input a0 must have been asserted at some time in
the past. However, we do not know the voltage of a1 when
r0 is observed to go high. We cannot tell if al is, perhaps,
in the middle of the voltage range—it could be at a voltage
low enough to allow r0 to reset, yet high enough to allow
rl to become active later—which might allow a glitch to
appear on the r1 output. We note that this is only an is-
sue if the resetting of al by the p-transistor gated by re is
slow. If we feel confident that that will never be the case,
we can ignore this problem, but if we insist that the cir-
cuit be QDI, the problem persists. (Recall that the QDI
condition, defined in Section I-B, does not allow the cor-
rect operation of the circuit to depend on the delay of an
operator.) For instance, adding Schmitt triggers on the in-
puts to SEL is not enough since the sufficient conditions
(described in Section III) that allow the Schmitt triggers
to have clean outputs do not obtain.

III. THE SAFE SYNCHRONIZER

We finish our quest for a reliable synchronizer by curing
the timing assumption in the SEL process. The problem
with the previous design is that a0 and a1 could have per-
sistent intermediate values between a legal logic zero and
a legal logic one. The cure is to ensure that both a0 and
al are at a well-defined value, true, before resetting the
circuit. The values re Az and re A—x are sampled as before
and SEL is used to determine which of r0 or r1 should be
asserted.

The safe synchronizer works as follows. Once the SEL
process has decided which input is high, the other input is
brought high. Once all inputs are in a known digital state,
the circuit resets. This design isolates the state in which
a0 and al can have intermediate values, allowing us to an-
alyze the circuit in the digital domain. The digital analysis
is sound as long as the inputs to the arbiter are monotoni-
cally increasing. Once the arbiter has decided that one of
the inputs has become high, it will not “change its mind.”
If the input z changes while re is high, both ¢0 and a1 may
rise, and the arbiter picks non-deterministically, as before.
Applying our new approach to the program for the syn-
chronizer, we introduce two new variables z0 and z1 and
write the behavior of the circuit as

*x[[re A -z —
a01; z01; alt; r01; [—rel; a0, all; 20]; rO}
lre Nz —>
alt; z11; a0T; r171; [—rel; a0, all; 21); r1]
11 .

We make SEL drive z0 and z1 instead of the output di-
rectly and write

x1 ri

SEL

x0 0

Fig. 5. Safe synchronizer.

SEL =*[[a0 — z201; [-a0 A —al]; z0J
lal — z11; [mal A —a0]; 1]
11 .

The rest of the synchronizer consists of the input integra-
tors and an output stage, which we compile directly as
follows.

The output stage is simply compiled as a pair of C-
elements.

z0A al —
—z0A —al —
z1 A ald —
-zl A —al —

rOt
r0J
rit
rll

The CMOS realization of these C-elements is with inverting
C-elements followed by inverters.
The input integrators are, as before:

a0t
a0l

alt
all

In the CMOS realization we have

a0_)
a0_1
al_l
al_t
a0l
a01
all
al?t

re Az Vzl —
—re —
reANxV z0 —
-re >

re AN—z V zl
-re

re Az V x0
—re

a0_

—a0_

al_

—al_

11111111

But one issue remains. The production rules for a0 and
al are unstable even though we have guaranteed that they
will switch monotonically from false to true and back. By
implementing the CMOS production rules for a0 and al
as Schmitt triggers instead of inverters, we guarantee that
a0 and al will now switch quickly and cleanly between
the rails without glitches. A circuit diagram of the safe
synchronizer is shown in Figure 5.

Readers experienced in asynchronous circuit design will
point out that it is not enough that signals be monotonic;
if a signal is changing monotonically but slowly, it is pos-
sible that a single value is interpreted as both a zero and
a one logic value by different parts of a circuit. This is in

Fig. 6. Safe synchronizer built around standard arbiter (partial).

essence due to the presence of isochronic forks where the
transistors located at the tines of the fork have different
voltage thresholds (see Section I-B). We use (inverting)
Schmitt triggers to avoid this problem, using the property
that an input that changes monotonically from one voltage
rail to another generates an output that changes monoton-
ically between the rails, but always fast enough to satisfy
the isochronic fork assumption. The Schmitt trigger is a
“slew rate amplifier.” As a bonus, the Schmitt triggers add
a satisfying noise margin to the design owing to their hys-
teresis. (Of course, this all comes at the cost of late, hys-
teretic thresholds and consequently longer latency.) The
reason that we did not use Schmitt triggers in the synchro-
nizer described in Section II is that a0 and el may have
glitches in that circuit—an inertial delay would be required
to remove those glitches.

A. Using a standard arbiter in a synchronizer

Sometimes, it is desirable to keep the number of “black
boxes” (especially containing metastability) that need to
be verified to a minimum. If we replace SEL in the safe
synchronizer and ensure that a0 and a1 reset in the correct
order, we can use a standard arbiter in place of SEL in the
synchronizer.

Consider the program

*[[re A -z —
a01; z01; al11; r071; [—rel; all; a04; 20); r0)
lre Nz —
alt; z11; a0T; r171; [—rel; a0); all; 215 r1]
11

the only difference between this program and that in the
previous section is the sequencing of the downgoing actions
on a0 and a1. By withdrawing the losing request before the
winner, we can use a standard arbiter without introducing
any glitches. To accomplish this, we have the PRS

reANz_Vzl — a0_|
—-re A—al — a0_1
reANzVz0 — al|
—re A —al — al_t

with the rest of the circuit as before. A partial circuit
diagram is shown in Figure 6. This design depends on the
fact that the outputs of the arbiter will not switch when
the second input is asserted.

x1

arbiter

x0

ireslo kill

Fig. 7. Arbitration stage of synchronizer with kill.

B. Version with “killable arbiter”

We have explored a number of other variations on the
safe synchronizer. In our original design, we did not have
the SEL process. In its place, we used a “killable” arbiter
which allows resetting the inputs concurrently as long as
a special kill signal is enabled. This design requires more
complex control than the versions we have presented so far.
The main advantage of the killable arbiter design is that
both the winning and losing input are pulled up equally
with the arbiter completely disabled. We no longer need
to analyze the situation when two inputs to the arbiter are
asserted specially.

The circuitry necessary to generate the ireslo and kill
signals and to make the circuit obey the same I/O specifi-
cation as the previous design is specified by the following
HSE:

*[[0V z1]; ireslot; [aOA all; killt;
[20 — 701021 — r11];
[-a0 A —all; Eilll; [—-21 A-z0]; dreslol; r0},rl]
]

We omit the straightforward production-rule compilation
of this HSE, which results in four Muller C-elements and
an or-gate.

The killable arbiter (Figure 8) is used in this design.
When _kill is low, the arbiter cannot drive any of its out-
puts high, and the inputs to the arbiter may be reset in
any order. The outputs will reset first when the kill signal
is de-asserted.

IV. PERFORMANCE MEASUREMENTS

None of the designs presented in this paper has yet been
fabricated. We produced layout using Berkeley’s Magic
layout editor, using design rules for the MOSIS/HP 0.6-pm
process. The layout was simulated using the Aspice analog
simulator with BSIM2 parameters. Qur parameters are
known to over-state circuit performance by some 15-20 %,
and the fact that our simulated layout does not include

T
1 oh)d L

A
bﬂiﬁ —5@}
4{

}7
}7 _kill

Fig. 8. Killable arbiter.

Implementation Fast | Safe
Mean cycle (ns) 1.36 | 3.41
Standard deviation (ns) | 0.031 | 0.306

Fig. 9. Aspice simulation results.

wiring loads would result in a further performance loss of
about the same magnitude in a real implementation.

We connected each synchronizer to a simple process that
repeatedly requests values (this is realized with a nor-gate
and two inverters). The input signal z was taken from an
unsynchronized eleven-stage ring oscillator running at ap-
proximately 300 MHz. We measured the interval between
adjacent synchronizations (this includes any metastability
due to inputs arriving within the confusion interval). The
“fast” synchronizer was the design of Section II and the
“safe” synchronizer was the version with the “killable ar-
biter” of Section III-B. The results are summarized in Fig-
ure 9.

The reader is cautioned that the performance figures
in Figure 9 are in no sense absolute. The synchronizers
presented in this paper have been designed to be under-
standable and not with performance in mind. Particularly
the safe synchronizer could be improved by rearranging the
signal senses. (The large standard deviation of the synchro-
nization interval of the safe synchronizer is due to the fact
that sometimes, because of the rapidly changing input, al
and a0 are both asserted before ireslo goes high.) Any
synchronizer design can also be improved simply by inter-
leaving between two or more identical synchronizers. Still,
the performance figures give an indication of the relative
speeds of the two designs.

In Figures 10-14 we show an example of two synchro-
nizations performed by the fast synchronizer. Figure 10
shows the inputs z, z_, and the request input re. Fig-
ure 11 shows the outputs a0_ and al_ of the “integrators,”
Figure 12 shows the inputs a0 and al to SEL, the arbitra-

0. L L
103 1035 104 104.5 105 105.5 106

Fig. 10. Synchronizer inputs.

05 L L L L L
103 103.5 104 104.5 105 105.5 106

Fig. 11. Integrator outputs.

tion part of the synchronizer, Figure 13 shows the internal
nodes r0_ and r1_ of the arbitration stage, and finally Fig-
ure 14 shows the clean outputs 70 and r1 of the device.

V. CONCLUSION

We have described a synchronizer that is guaranteed to
output a legal digital dual-rail value that represents the
value of an unsynchronized input in some bounded time
neighborhood of the synchronization request. Our circuit
depends on the usual assumptions of quasi delay-insensitive
design (namely, the concept of isochronic fork) as well as on
certain monotonicity properties of the signals, but no fur-
ther timing assumptions or restrictions on the environment
are necessary.

The two designs we have presented have different
strengths. The first synchronizer of Section II is a sim-
ple, fast circuit, but unfortunately it depends on a tim-
ing assumption, which can be a drawback in some situa-
tions. The safe designs, on the other hand, are quasi delay-
insensitive, but they add extra complexity in the form of
Schmitt triggers and control circuitry, and they are slower.

The synchronizer design problem reveals the impor-
tance of considering subtle timing issues when dealing with

-0.5

L L L L L
103 103.5 104 104.5 105 105.5 106

Fig. 12. SEL inputs.

Fig. 13. Internal nodes.

103 103.5 104 104.5 105 105.5 106

Fig. 14. Synchronizer outputs.

metastable circuits. While it is probably true that the “un-
safe” synchronizer we have presented is perfectly safe (i.e.,
will not malfunction) under any reasonable device param-
eters and input scenarios, a naive analysis of the circuit in
terms of digital production rules might lead to the incorrect
conclusion that it is quasi delay-insensitive.

VI. ACKNOWLEDGMENTS

The research described in this report was sponsored by
the Defense Advanced Research Projects Agency and mon-
itored by the Office of Army Research. Mika Nystrém
was supported in part by an Okawa Foundation fellowship
and an IBM Research Fellowship. Rajit Manohar was sup-
ported in part by a National Science Foundation CAREER
award. The authors thank Andrew Lines for convincing us
that it is perhaps not necessary to bring all the signals to a
known value between synchronizations and Paul Pénzes for
suggesting that something was amiss with the previously
known solution.

REFERENCES

[1] T.J. Chaney and C. E. Molnar. “Anomalous Behavior of Syn-
chronizer and Arbiter Circuits,” IEEE Transactions on Com-
puters, C-22(4):421-422, April 1973.

[2] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice-

Hall, 1992.

[3] A. M. Lines. Personal communication, 2001.

[4] Leonard R. Marino. “General Theory of Metastable Operation,”
IEEE Transactions on Computers, C-30(2):107-115, February
1981.

[5] A. Marshall, B. Coates, and P. Siegel. “Designing An Asyn-
chronous Communications Chip,” [IEEE Design and Test of
Computers, 11(2):8-21, 1994.

[6] A.J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes,
R. Southworth, U. Cummings, and T. K. Lee. “The Design of
an Asynchronous MIPS R3000 Processor,” in Proceedings of the
17th Conference on Advanced Research in VLSI. Los Alamitos,
Calif.: IEEE Computer Society Press, 1997.

[7] A.J.Martin. “Programming in VLSI: From communicating pro-
cesses to self-timed VLSI circuits,” in Concurrent Programming,
(Proceedings of the 1987 UT Year of Programming Institute on
Concurrent Programming), C.A.R. Hoare, ed. Addison-Wesley,
Reading, Mass., 1989.

[8] A. J. Martin. “Synthesis of Asynchronous VLSI Circuits,” in
Formal Methods for VLSI Design, J. Staunstrup, Ed. North-
Holland, 1990.

[9] A. J. Martin. “Synthesis of Asynchronous VLSI Circuits,” Cal-
tech CS Technical Report Caltech-CS-TR-93-28. California In-
stitute of Technology, 1993.

[10] S. Hauck. “Asynchronous Design Methodologies: An Overview,”
Proceedings of the IEEE, 83(1):69-93, 1995.

[11] A. J. Martin. “The limitations to delay-insensitivity in asyn-
chronous circuits,” in Sizth MIT Conference on Advanced Re-
search in VLSI, W.J. Dally, Ed. Cambridge, Mass.: MIT Press,
1990.

[12] Carver Mead and Lynn Conway, Introduction to VLSI Systems.
Reading, Mass.: Addison-Wesley, 1980.

[13] Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney,
and Ting-Pien Fang. “@-Modules: Internally Clocked Delay-
Insensitive Modules,” I[EEE Transactions on Computers,
37(9):1005-1018, September 1988.

[14] Charles L. Seitz. “System timing,” chapter 7 in [12].

